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Medical Image Analysis (MedIA) has become indispensable in modern healthcare, enhancing clinical diag-
nostics and personalized treatment. Despite the remarkable advancements supported by deep learning (DL)
technologies, their practical deployment faces challenges due to distribution shifts, where models trained
on specific datasets underperform across others from varying hospitals, regions, or patient populations. To
navigate this issue, researchers have been actively developing strategies to increase the adaptability and
robustness of DL models, enabling their effective use in unfamiliar and diverse environments. This paper
systematically reviews approaches that apply DL techniques to MedIA systems affected by distribution shifts.
Unlike traditional categorizations based on technical specifications, our approach is grounded in the real-
world operational constraints faced by healthcare institutions. Specifically, we categorize the existing body of
work into Joint Training, Federated Learning, Fine-tuning, and Domain Generalization, with each method
tailored to distinct scenarios caused by Data Accessibility, Privacy Concerns, and Collaborative Protocols.
This perspective equips researchers with a nuanced understanding of how DL can be strategically deployed to
address distribution shifts in MedIA, ensuring diverse and robust medical applications. By delving deeper into
these topics, we highlight potential pathways for future research that not only address existing limitations but
also push the boundaries of deployable MedIA technologies.
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1 Introduction
Medical image analysis (MedIA) [42, 113] has become a cornerstone of modern healthcare, playing a
critical role in enhancing diagnostics [76, 136], patient monitoring [53], and treatment planning [81].
With the advent of high-resolution imaging technologies and the increasing complexity of medical
data, the application of advanced computational tools has become indispensable. Deep learning (DL)
technologies [74, 150, 155, 171], in particular, have revolutionized MedIA by enabling automated
and accurate analyses of medical images [5, 6, 16, 24, 58, 62, 100, 177]. These technologies leverage
large datasets to train models that can recognize patterns with a precision often surpassing human
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capabilities [153]. The integration of DL in MedIA not only speeds up diagnostic processes but also
offers the potential for personalized healthcare through more accurate patient-specific assessments.
However, the application of deep learning techniques in MedIA faces substantial challenges,

primarily due to distributicon shifts. These shifts occur because the training data (known as
source data) used to develop DL models often come from highly controlled environments or specific
populations. When deployed in varied medical settings – like different hospitals, population regions,
and time periods – these models encounter data that differ significantly in aspects such as imaging
modalities [251], scanning protocols [132], patient populations [48], and temporal changes [218].
These variations expose the models to novel, out-of-distribution patterns (referred to as target
data) that they have not been trained to recognize, impairing their ability to generalize effectively;
this compromised performance in turn undermines the reliability and effectiveness of DL-based
diagnostics. Therefore, addressing these distribution shifts is crucial for the effect and reliable
deployment of DL technologies in diverse medical environments.

To this end, this survey focuses on investigating DL-based MedIA under the challenges posed by
distribution shifts. In recent years, the research community has actively developed strategies to
enhance the adaptability and robustness of DL models. These strategies aim to mitigate the impact
of data distribution shifts across diverse medical settings [54, 227]. In real-world healthcare, the
successful deployment of DL technologies often encounters various operational constraints that
directly leads to different data distribution shift scenarios. These constraints typically stem from
several key factors:

- DataAccessibility:This aspect concerns the availability of comprehensive datasets for training
DL models. The breadth and quality of accessible data impacts how well a model can be trained
to handle varied medical conditions, determining the difficulty level of managing the potential
data distribution shifts.

- Privacy Concerns: Given the sensitive nature of medical data, privacy concerns [82] revolve
around the protection of patient information. These considerations often limit the sharing of
medical data among different healthcare institutions, creating data silos that exacerbate the
potential data distribution shifts.

- Collaborative Protocols: Collaboration among healthcare institutions enables collective
efforts to improve diagnostic models across diverse settings. By adhering to different proto-
cols, various collaborative methods [104, 159] have been developed while meeting specific
requirements to alleviate the potential distribution shifts.

Building on these practical considerations while deploying DL models, we categorize existing
efforts to manage distribution shifts in MedIA into a hierarchy from simple to hard (see Fig. 1):

- Joint Training: This approach is feasible when both the source and target data are accessible
and there is no privacy concerns. This scenario often occurs when multiple health institutions
agree to share their own data, facilitating joint model training [18, 133] and thereby enhancing
model adaptability across diverse settings.

- Federated Learning:When multiple institutions seek to cooperate without exposing their
distinct datasets due to privacy concerns, federated learning [156, 160] offers a powerful
solution. It enables collaborative model improvements across different institutions by training
models locally and aggregating the learned models without centralizing data storage.

- Fine-tuning: When synchronous collaborations are not allowed for addressing data distribu-
tion shifts with privacy concerns, fine-tuning [68, 216] emerges as an effective remedy. This
involves using a well pre-trained model and then fine-tuning it on new datasets to transfer
learned knowledge to unfamiliar domains.
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Fig. 1. The diagram categorizes existing deep learning techniques into four main approaches, each addressing
real-world operational constraints including Data Accessibility, Privacy Concerns, and Collaborative Protocols.
In Joint Training, hospitals collaborate by sharing data for model training. Federated Learning enables
collaboration without direct data sharing, maintaining privacy. Fine-tuning adapts pre-trained models from
one institution to another. Domain Generalization develops models that generalize across diverse settings,
even without access to target data, to mitigate distribution shifts.

- Domain Generalization: When data from unseen domains that require model adaptation is
inaccessible or unknown, training amodel that is generalizable enough towithstand distribution
shifts is essential [111, 246]. This involves preparing for unforeseen challenges by developing
models that can generalize from the data currently available for training to any potential new
environments.

In this survey, we present a nuanced understanding of how deep learning can be strategically
deployed to address distribution shifts in MedIA, facilitating the development of diverse and robust
applications. While a few surveys have also explored the impact of distribution shifts on MedIA and
summarized solutions, our work stands apart in several critical ways. For instance, [54] primarily
focuses on domain adaptation (DA) within MedIA, categorizing existing methods based on the
degree of DL model supervision while [227] emphasizes Domain Generalization (DG) and organizes
existing methods according to common MedIA workflows. Although DA and DG are significant
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Table 1. Definition of mathematical notations.

Notation Definition Notation Definition Notation Definition
X,Z,Y Input, feature, output space 𝑝 (·) Probability distribution M(·) Manipulation function
x, z, 𝑦 Input, feature, label variables 𝑃 (·) Prior Knowledge 𝑓 (·) Feature mapping function
D𝑡 ,D𝑠 Target, Source Domains 𝑞𝜃 (·) Predictive function L(·, ·) Loss function

topics with profound impacts onMedIA, these surveys [54, 227] concentrate on the technical aspects
of existing approaches, treating MedIA primarily as an application domain. Their classifications,
rooted in the intricacies of DL techniques, often overlook the real-world medical constraints that
give rise to different distribution shift scenarios. Consequently, they fail to provide a detailed,
step-by-step guide addressing the impact of medical data variations.

Unlike them, our approach is grounded in the practical, operational constraints faced by health-
care institutions, examining current DL techniques in light of the real factors affecting MedIA
under distribution shifts. Moreover, while some surveys have explored these issues within medical
contexts, they often restrict their discussions to specific scenarios (e.g., heart/lung/brain), such
as [93, 97, 117, 206, 229], lacking a comprehensive exploration of distribution shifts within MedIA.
Our survey addresses these gaps by offering direct and actionable strategies for deploying DL mod-
els under the unique operational constraints encountered in real-world applications. This not only
serves as a practical guide for medical professionals on employing deep learning to tackle genuine
medical challenges but also underscores the transformative potential of DL technologies in MedIA.
By highlighting operational constraints and providing tailored solutions, our survey deepens the
understanding and broadens the application of deep learning in MeIA, thereby enhancing both the
field and the integration of artificial intelligence in healthcare.

2 Preliminaries
In this section, we formalize the distribution shift problem with notations defined in Table 1
for easily reading. A domain D is a joint distribution 𝑝 (𝑥,𝑦) defined on the input-output space
X × Y, where random variables 𝑥 ∈ X and 𝑦 ∈ Y denote the input data and the output label,
respectively. We typically deal with two distinct datasets, known as the source and target domains.
The Source Domain D𝑠 = {(𝑥,𝑦) ∼ 𝑝𝑠 (𝑥,𝑦)}. comprises medical images 𝑥 such as X-rays or
MRI scans, each paired with a label 𝑦 that might be categorical information regarding disease
diagnosis or the segmentation mask. The Target Domain D𝑡 = {(𝑥,𝑦) ∼ 𝑝𝑡 (𝑥,𝑦)} originates
from a different but related distribution to that of the source. For instance, they might come from
different medical imaging devices or patient populations. Note that for both source and target
distributions, 𝑝𝑠 (𝑥,𝑦) = 𝑝𝑠 (𝑥)𝑝𝑠 (𝑦 |𝑥) and 𝑝𝑡 (𝑥,𝑦) = 𝑝𝑡 (𝑥)𝑝𝑡 (𝑦 |𝑥). We take the standard covariate
shift assumption as Distribution Shift, i.e., 𝑝𝑠 (𝑦 |𝑥) = 𝑝𝑡 (𝑦 |𝑥) and 𝑝𝑠 (𝑥) ≠ 𝑝𝑡 (𝑥). In this situation,
the model 𝑞𝜃 (𝑦 |𝑥) solely trained on the source domain cannot well represent the true, domain-
invariant distribution 𝑝 (𝑦 |𝑥). Therefore, a variety of research concentrates on adjusting 𝑞𝜃 (𝑦 |𝑥) to
maximize its predictive performance on the target distribution.

3 Background
3.1 Distribution Shifts in Medical Image Analysis
The efficacy of DL models largely hinges on the assumption that the training and testing data are
independently and identically distributed (i.i.d). However, this assumption often does not hold in
the complex and diverse environment of clinical practice. The inherent heterogeneity in medical
imaging, arising from different modalities, varying protocols, diverse patient demographics, and
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Fig. 2. Illustration of medical imaging distribution shifts, showcasing from Imaging Modalities (Cardiac
Substructure [251]), Scanning Protocols (Cross-Site Prostate [132]), Patient Demographics (Cross-Population
Chest [89, 198]), and Temporal Shifts (Mouse Lung [158]).

temporal shifts, introduces significant distribution shifts. In the following, we provide a concise
illustration with visual examples presented in Fig. 2:

- Imaging Modalities: Medical imaging encompasses a range of modalities, such as Magnetic
Resonance Imaging (MRI), Computed Tomography (CT), X-rays, and Ultrasound, each pro-
ducing images with unique characteristics. A model trained on data from one modality might
not generalize well to another, given the inherent differences in image textures, contrasts, and
anatomical representations.

- Scanning Protocols: Even within the same modality, images can vary based on the imaging
protocols and equipment used. Factors such as magnetic field strength in MRI, radiation dose
in CT, and ultrasound machine settings can introduce significant variations in the images.

- Patient Demographics: Differences in patient populations, such as age, gender, and ethnicity,
as well as variations in disease manifestations, can lead to substantial differences in imaging
data. For instance, pediatric images are markedly different from adult images.

- Temporal Shifts: Longitudinal data collected over extended periods often encounter shifts due
to physiological states change, treatment impact, and the progression of diseases. As a result,
models trained on historical data may not perform optimally on current or future data.

4 Categorization and Frameworks
This section provides an overview of our categorization rationale and framework for addressing
MedIA under distribution shifts. We primarily consider the real-world operational constraints
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Table 2. Taxonomy of DL techniques designed for MedIA under Distribution Shifts.

Methods Settings Medical Scenarios Difficulty Pros Cons

Joint Training

Supervised
Analysis of multimodal medical imaging
(e.g., using both PET and CT images
simultaneously).

Low

Utilizes different but
complementary
information to enhance
robustness

Need to synchronize
distinct data sources

Semi-
supervised

Target labeled data is scarce. By combining
a small amount of labeled data with a large
amount of unlabeled data, models can be
trained to improve accuracy, especially for
rare diseases where obtaining sufficient
labeled samples is challenging.

Medium Uses available labels
efficiently

Highly dependent on the
quality of labeled data

Unsupervised

The target hospital or device lacks
sufficient labeled data. For example,
adapting a model to a new hospital or new
equipment dataset without the additional
labeled data from the target environment.

Medium No need for labeled
target data

May struggle with very
distinct domain shifts

Federated
Learning

Supervised

Collaborative research across multiple
hospitals. This allows hospitals to improve
the model collaboratively while
maintaining patient data privacy.

Medium
Preserves privacy, good
for multi-institutional
data

High communication
overhead and
complexity

Semi-
supervised

Same with the Supervised setting for
privacy preserving while the label is scarce
for the involved hospitals.

High

Leverages the existing
unlabeled data
efficiently, practical for
real-world
collaborations

Achieving convergence
can be difficult and slow

Fine-tuning

Supervised

For smaller hospitals with limited
resources, they can utilize models
pre-trained on large datasets and finetune
them with a small amount of local data to
quickly deploy effective diagnostic tools.

Low

Quickly adapts
pre-trained models to
new tasks with minimal
data

Risk of overfitting,
especially with limited
data

Unsupervised
Similar to the above but source data are
unavailable due to privacy or security
concerns.

High
Ideal for strict privacy
settings, adapts using
only target domain data

May suffer from model
degradation and
sensitive to supervision
signal

Domain
Generalization

Multi-source

Multiple source domains (e.g., from
different hospitals/modalities/scanners)
with labels to improve model ability to
generalize to new, unseen medical
environments.

Medium Strong generalization Requires diverse source
data

Single-source
Data diversity is limited, e.g., source
dataset comes from only one type of MRI
scanner.

High Simple implementation
Limited effectiveness
across wider domain
shifts

encountered when deploying DL techniques in MedIA, such as Data Accessibility, Privacy Concerns,
and Collaborative Protocols. These factors shape different scenarios under distribution shift in
MedIA, leading to the classification of exisiting DL techniques into four main categories: Joint
Training, Federated Learning, Fine-tuning, and Domain Generalization (see Table 2). Within each
major category, we further subdivide the techniques into prominent subdomains in the field,
primarily based on differences in label rate and diversity of data. These subdomains are then ranked
according to their learning difficulty. Furthermore, to help researchers quickly identify the technical
types of methods they are interested in, we categorize the methods within each subdomain under
three aspects:

- Data Management: Focuses on increasing the model’s exposure to varied data scenarios
through strategic data augmentation, selection, and translation techniques.

- Model Design: Involves modifying the structural and strategic elements of frameworks to
enhance adaptability and robustness to changes in data distribution.
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- Optimization Strategy: Encompasses advancements in training process adjustments, opti-
mizing how models learn from data exhibiting distribution shifts.

It is important to note that while methods are classified by their primary innovation, many integrate
multiple strategies across these aspects. This structured taxonomy not only aids in identifying
methods suited to specific problems but also facilitates a comparative and systematic analysis.

5 Joint Training
Joint Training is a crucial domain adaptation strategy in MedIA, particularly effective when target
data is freely accessible and privacy concerns are minimal. This method excels in environments
where healthcare institutions can collaboratively share data, creating the ideal conditions for joint
model training. Such collaboration significantly enhances the adaptability of models across varied
medical settings by integrating both source and target data, as shown in Fig. 3. Typically, the source
dataset is fully-labeled, whereas the target dataset often exhibits varying labeling rates due to
changes in medical scenarios, introducing complexities to DL model training. In response, a variety
of joint training strategies have emerged, each designed to address the specific challenges posed by
fluctuating label availability on target data. These methods are categorized based on the level of
target supervision, ranging from Supervised to Semi-supervised, and Unsupervised Joint Training.

5.1 Supervised Joint Training
Supervised Joint Training is a domain adaptation strategy where models are concurrently trained on
both the source and target domain data, leveraging labeled data from both to enhance performance
despite domain shifts. This method is particularly valuable when the target domain has significantly
less labeled data than the source, as relying solely on target data would yield inadequate model
performance. In Supervised Joint Training, the strategy involves integrating different modalities or
varying views of data, and often includes synthesizing data to mitigate the data shortage problem in
the target domain. These methods effectively utilize the structural and distributional characteristics
of data from both domains, making full use of all available labeled data to effectively bridge the
gap between the source and target domains.

5.1.1 Data Management

5.1.1.1 Cross-modal Translation. Cross-modal translation plays a pivotal role in addressing
the challenge of integrating data from diverse imaging modalities, which often exhibit distinct
intensity and texture characteristics. This technique facilitates the conversion of data between
modalities, such as from MRI to CT images, enabling the use of a unified dataset for training despite
the inherent discrepancies. By synthesizing data from one modality in the form that resembles
another, cross-modal translation helps to overcome the shortage data problem and enhances the
robustness of the training process. Specifically, Generative Adversarial Networks have proven to
be particularly effective for cross-modal translation [13, 116, 189, 249] by creating high-quality
synthetic images that maintain the domain-specific characteristics of the target modality. For
example, the shape-consistency approach [13] leverages GANs for volume-to-volume translation,
ensuring that the structural integrity of medical images is preserved across modalities.

5.1.2 Model Design

5.1.2.1 Architecture Variations. Novel architectural designs are crucial for addressing domain
adaptation challenges. For instance, the domain-adaptive two-stream U-Net, applied for electron
microscopy image segmentation [10], features a dual-stream architecture that supports selective
weight sharing between source and target domains. This design enhances adaptability by allowing
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Fig. 3. Joint Training in MedIA: It enables data sharing among healthcare institutions without privacy
constraints, integrating source and target data to improve model adaptability across diverse medical settings.
Images are collected from datasets Kather16 and Kather19 [87, 88].

the model to fine-tune its responses to the unique characteristics of each domain. Similarly, the
Multi-Site Network (MS-Net) for cross-site prostate segmentation [133] incorporates Domain-
Specific Batch Normalization (DSBN). DSBN effectively manages inter-site variability by providing
distinct feature normalization for each site, ensuring that the model remains robust across diverse
MRI datasets.

5.1.3 Optimization Strategy

5.1.3.1 Metric Learning. Metric Learning has proven instrumental in maintaining high general-
ization performance across different data domains. A notable application is demonstrated in [101],
where metric learning is employed to enhance domain adaptation for Wireless Capsule Endoscopy.
This approach utilizes triplet loss, a form of contrastive learning, which effectively minimizes
the distance between embeddings of samples with the same labels from different domains while
maximizing the distance between samples with different labels from the same domains. By doing
so, it ensures that the model can accurately interpret and classify medical images regardless of the
specific device version.

5.2 Semi-supervised Joint Training
Semi-supervised Joint Training, also referred to as Semi-Supervised Domain Adaptation (SSDA),
is a cutting-edge machine learning strategy aimed at transferring knowledge from a well-labeled
source domain to a target domain with scarce labels. This approach is vital in situations where
acquiring comprehensive labels for the target domain is impractical due to cost or time constraints.
The primary challenges of SSDA include maximizing the utility of limited labeled data and a larger
volume of unlabeled data in the target domain, as well as mitigating distribution discrepancies
between the domains.

5.2.1 Data Management

5.2.1.1 Pseudo-labeling. Pseudo-labeling is a powerful technique in semi-supervised joint train-
ing that leverages large volumes of unlabeled data to enhance model training. This method involves
generating artificial labels for unlabeled data based on the most confident predictions of the model,
thereby expanding the training dataset effectively. In domain adaptation, its effectiveness hinges on
prioritizing model’s predictions exceeding a defined threshold that are more likely to be accurate:

𝑦𝑢 =

{
argmax𝑞𝜃 (𝑥𝑢), if max𝑞𝜃 (𝑥𝑢) > 𝜏
ignore, otherwise

(1)

where 𝑥𝑢 represents an unlabeled sample from the target domain, 𝑞𝜃 (𝑥𝑢) denotes the model’s
probabilistic predictions, 𝑦𝑢 is the pseudo-label assigned to 𝑥𝑢 , and 𝜏 is a threshold defining the
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confidence level above which the labels are considered reliable. The loss is computed as:

L𝑢 =
∑︁
𝑥𝑢 ∈X𝑢

I (max𝑞𝜃 (𝑥𝑢) > 𝜏) · L(𝑦𝑢, 𝑞𝜃 (𝑥𝑢)) (2)

where I(·) is an indicator function that selects high-confidence samples. The total training objective
combines the loss from labeled data and high-confidence pseudo-labeled data:

L𝑡𝑜𝑡𝑎𝑙 = L𝑙 (Y𝑙 , 𝑞𝜃 (X𝑙 )) + 𝛽L𝑢 (Ŷ𝑢, 𝑞𝜃 (X𝑢)) (3)

where 𝛽 is a balancing factor between the source and pseudo-labeled losses.
To mitigate the risk of error propagation, which can occur if incorrect labels are used for

training, enhancements are made to ensure the quality of these pseudo-labels. For example, [50]
employs transformation-invariant, highly-confident predictions in the target dataset for self-training
purposes, ensuring that the model is less likely to learn from noisy, less reliable labels. Meanwhile,
[220] enhances the robustness of pseudo-labeling by calculating the variance between the original
image and its Fourier-transformed counterpart, providing a more stable basis for generating reliable
pseudo-labels. These strategies significantly improve the utility of pseudo-labeling, making it a
vital tool for utilizing unlabeled data in domain adaptation.

5.2.2 Model Design

5.2.2.1 Self-ensembling . Self-ensembling is an advanced learning strategy that effectively ex-
ploits both labeled and unlabeled data with the consistency between models. This method trains
multiple versions of a model, each subjected to distinct input perturbations, and employs consistency
regularization to ensure uniform predictions across these variations. Typically, this technique under
SSDA setting is implemented via a “teacher-student” model, where a stable, pre-trained “teacher”
model 𝑞𝑡𝑐

𝜃
guides a less-trained “student” model 𝑞𝑠𝑡

𝜃
. The overall training process is governed by

two primary loss functions:

L𝑡𝑜𝑡𝑎𝑙 = L𝑙 (Y𝑙 , 𝑞𝑡𝑐𝜃 (X𝑙 )) + 𝜆L𝑐𝑜𝑛𝑠 (𝑞𝑡𝑐𝜃 (X𝑢)), 𝑞𝑠𝑡𝜃 (X𝑎𝑢𝑔
𝑢 ))

where supervised loss L𝑙 is for measuring discrepancies in the teacher’s predictions on labeled
input 𝑞𝑡𝑐

𝜃
(X𝑙 ), and consistency loss Lcons is for aligning the teacher’s predictions on unlabeled input

𝑞𝑡𝑐
𝜃
(X𝑢) with the student’s on perturbed inputs 𝑞𝑠𝑡

𝜃
(X𝑎𝑢𝑔

𝑢 ). The two loss functions are balanced by
a regularization parameter 𝜆.

Following this framework, [114, 115] introduce this techniques into achieveing semi-supervised
domain adaptation. The core innovation of these frameworks lies in the strategic employment of
dual-teacher models: one teacher model enhances intra-domain knowledge through self-ensembling
techniques, while the other facilitates inter-domain knowledge transfer using image translation
models such as CycleGAN [248]. This approach leverages the consistency of model outputs across
different views of the same data, enhancing the model’s ability to generalize across diverse scenarios.

5.2.2.2 Adversarial Learning. Adversarial leaning is fundamentally embodied by Generative
Adversarial Networks (GANs) [3]. It can be conceptualized as a game between two players:

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = E𝑥∼𝑝data (𝑥 ) [log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧 ) [log(1 − 𝐷 (𝐺 (𝑧)))]

where generator (G) aims to produce data that is indistinguishable from real data by transforming
input noise 𝑧, sampled from a noise distribution 𝑝𝑧 (𝑧), and discriminator (D) aims to correctly
classify real data 𝑥 and generated data 𝐺 (𝑧). Real data 𝑥 is sampled from the true data distribu-
tion 𝑝data (𝑥). This interaction forms a min-max game where the generator seeks to deceive the
discriminator into accepting its outputs as real, while the discriminator improves at identifying the
differences between real and generated data. Through this adversarial process,𝐺 refines its outputs
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to reduce discrepancies, indirectly generating domain-invariant features for domain adaptation. As
one notable method, COVID-DA [238] is designed to distinguish between closely related conditions
such as pneumonia and COVID-19, particularly when labeled data is scarce. This method uses
a unique classifier separation scheme along with an adversarial network to overcome the task
difference and domain discrepancy simultaneously.

5.2.2.3 Novel Training Strategies. [141] explores the richness of multi-modal data through
a novel asymmetric co-training approach. By segmenting the learning process into two distinct
components that each addresses specific aspects of domain adaptation and semi-supervised learning
task, this strategy avoids the source domination thus facilitates more effective domain adaptation.

5.2.3 Optimization Strategy

5.2.3.1 Metric Learning. Metric Learning within the context of semi-supervised joint training
is distinctly innovative. In this scenario, [7] adopts a metric learning strategy characterized by a
disentangled paradigm. This approach separates style and content into distinct embedding spaces.
Such separation facilitates independent contrastive learning for each aspect, allowing the model to
adapt more effectively to variations in data distributions.

5.3 Unsupervised Joint Training
Unsupervised Joint Training, commonly known as Unsupervised Domain Adaptation (UDA), is
an advanced machine learning framework that facilitates the transfer of knowledge from a richly-
labeled source domain to a completely unlabeled target domain. The central challenge of UDA
lies in the absence of labels in the target domain, necessitating techniques that can align the
underlying data distributions of both domains to enable accurate predictions on the target dataset.
Key strategies include domain invariant feature extraction and distribution alignment.

5.3.1 Data Management

5.3.1.1 Cross-Modal Translation. Cross-modal translation, employing techniques such as Gener-
ative Adversarial Networks (GANs) and frequency-based methods, is pivotal in transforming how
we address domain differences by converting data from the source domain 𝑆 to closely resemble
the target domain 𝑇 . This transformation is formalized as:

X̃ = 𝐺 (X𝑠 ;𝜃𝐺 ) where 𝐺 : D𝑠 → D𝑡 (4)

Here, 𝐺 represents a generative model that minimizes domain discrepancies to align source do-
main D𝑠 with target domain D𝑡 . The adaptation’s effectiveness hinges on reducing the domain
discrepancy metric 𝑑 , which measures differences between the adapted X̃ and target X𝑡 :

min
𝜃𝐺

𝑑 (X̃,X𝑡 ) = min
𝜃𝐺

𝑑 (𝐺 (X𝑠 ;𝜃𝐺 ),X𝑡 ) (5)

Once the data X̃ closely resembles X𝑡 , it can be used to train models with source domain labels
Y𝑠 , significantly enhancing the model’s ability to generalize across domains and mitigate image
scarcity in specialized fields.

The application of GANs has evolved significantly, beginning with methods like the pixel-to-pixel
(pix2pix) translation and advancing to more complex implementations. For instance, [109] utilizes
an end-to-end unsupervised method for enhancing contrast in cataract fundus image based on
pix2pix framework. Then, MADGAN [60] breaks the constraints of paired images, contributing
to anomaly detection in complex brain structures. SASAN [190] takes a further step that incorpo-
rating self-attention modules in its GANs, enhancing focus on specific anatomical details during
image translation. Subsequently, the utilization of CycleGANs [248] marks another significant
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advancement, enabling unpaired image translations for cross-domain chest X-ray disease recogni-
tion [173, 187] and hip joint bone segmentation [231]. This translation process is further refined
in [252] with dual-scheme (source-target/target-source) fusion and [37] with attention mechanism.
Integrating disentangled representations into GAN frameworks, as seen in [23, 77, 164, 197, 217, 221],
significantly advances domain adaptation by separating content from style, enhancing adaptation
efficiency. Complementing the adversarial nature of GANs, frequency-based methods [71, 232]
introduce a novel perspective. They assume that the style information is stored in low frequency
components and high frequency components represents more structural information, and thus
translate the images by replacing the low frequency components. Finally, techniques like singular
value decomposition for noise adaptation in retinal OCT images [96] highlight the innovation and
adaptability in this field, which is tailored to specific imaging modalities or diagnostic requirements.

5.3.1.2 Pseudo-labeling. In UDA, as all target data labels are unknown, it becomes more chal-
lenging to make accurate pseudo-label predictions using traditional techniques. Research has since
advanced the pseudo-labeling concept by integrating pseudo-labeling and adversarial learning to
enhance the process [207]. Subsequent studies have built on this foundation, each offering unique
improvements to address issues such as noisy labels [41] and enhancing label reliability through
methods like iterative self-training [179], contrastive learning [145], and entropy constraints [46].
The specialized applications of pseudo-labeling are further explored in studies [30, 107, 142]. For
example, [107] focuses on nuclei instance segmentation and classification, utilizing pseudo-labels de-
rived from prototype features. [30] breaks new ground in cell detection with a pseudo-cell-position
heatmaps. [142] innovates by incorporating pseudo-labeling into tagged-to-cine MRI synthesis
task, employing a Bayesian uncertainty mask for selective pseudo-label generation.

5.3.2 Model Design

5.3.2.1 Adversarial Learning. Adversarial Learning is widely used for the implicit alignment
between domains at feature or/and pixel level due to the absence of target labels. At the feature level,
techniques such as the plug-and-play adversarial domain adaptation network (PnP-AdaNet) [39]
aligns features across different scales for segmentation tasks. Similarly, [78] aligns extracted contents
for cross-modality segmentation. Other studies focus on prediction space alignment at the pixel level
for various medical imaging tasks [103, 124, 178, 213]. Integrated approaches that apply adversarial
training at both feature and output levels are explored in studies like [11, 14, 18, 19, 125, 180, 185].
Innovations in this field also include enhanced discriminators and local discriminators that focus
on specific region alignment, introducing spatial-aware and class-specific attentions to refine the
adversarial loss and improve model adaptability across domains [26, 128, 167, 226].

5.3.2.2 Self-ensembling. Initial studies by [165] applied self-ensembling to gray matter MRI
segmentation. Subsequent applications include breast MRI segmentation [99] and pose estimation in
operating rooms [182]. More advanced techniques combine adversarial training and self-ensembling
for addressing domain shifts in cross-institutional gliomas studies [174], optic disc and cup segmen-
tation [129] as well as cardiac substructure segmentation [243]. Other significant developments
include MT-UDA [242], which introduces a multi-teacher framework, and [135] further integrates
frequency and spatial domain through multi-teacher distillation. Moreover, [63] explores a ’student-
to-partner’ paradigm during various training stages.

5.3.2.3 Graph-based Methods. Graph-based methods are increasingly utilized in cross-domain
medical image analysis due to their capability to capture complex spatial structures and relationships.
This approach models image elements – ranging from individual pixels to entire regions – as nodes
in a graph, with edges formed based on criteria like spatial proximity and similarity in intensity
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or texture. The core of this method involves a graph 𝐺 = (𝑉 , 𝐸), with 𝑉 representing the vertices
and 𝐸 the edges, which are weighted according to the mentioned criteria. This setup facilitates the
use of graph convolutional networks (GCNs) [57, 94, 192], which leverage the graph structure for
learning, described mathematically as:

𝐻 (𝑙+1) = 𝜎
(
𝐷− 1

2𝐴𝐷− 1
2𝐻 (𝑙 )𝑊 (𝑙 )

)
(6)

where 𝐻 (𝑙 ) represents the features at each node in layer 𝑙 , 𝐴, 𝐷 is adjacency and degree matrix,
𝑊 (𝑙 ) is the weight matrix for layer 𝑙 , 𝜎 denotes the activation function. This process effectively
leverages node features and graph topology for a comprehensive analysis. Applications of this
method include feature disentanglement [56] for domain-invariant learning [152] with GCN, graph
Laplacian decomposition for brain imaging alignment across domains [52], attention-guided GCN
for identifyingmajor depressive disorder [44], and a class-aware GCN classifier with domain-specific
features for predicting lymph nodemetastasis in gastric cancer [239]. Other notable implementations
like [139] extends beyond traditional methods by incorporating an online sub-graph scheme, [112]
employs GCNs with a meta-learning strategy targeting at small-sized pancreatic cancer features.
Studies like [126, 127] focus on enhancing feature alignment and understanding inter-category
relationships using graph-based techniques.

5.3.3 Optimization Strategy

5.3.3.1 Statistical Discrepancies Minimization. Quantifying and subsequently minimizing the
statistical discrepancies between source and target domain feature spaces serves as a key approach.
This paradigm, rooted in the hypothesis that reducing such discrepancies aids in model adaptation,
predominantly employs measures like Kullback-Leibler (KL) divergence, Maximum Mean Discrep-
ancy (MMD), and Correlation Alignment (CORAL). For example, the adaptation with MMD [147]
between source and target domains can be mathematically formulated as:

L(𝐷𝑠 , 𝐷𝑡 ) =
1
𝑛2𝑠

𝑛𝑠∑︁
𝑖=1

𝑛𝑠∑︁
𝑗=1

𝑘 (𝑧𝑖𝑠 , 𝑧
𝑗
𝑠 ) +

1
𝑛2𝑡

𝑛𝑡∑︁
𝑖=1

𝑛𝑡∑︁
𝑗=1

𝑘 (𝑧𝑖𝑡 , 𝑧
𝑗
𝑡 ) −

2
𝑛𝑠𝑛𝑡

𝑛𝑠∑︁
𝑖=1

𝑛𝑡∑︁
𝑗=1

𝑘 (𝑧𝑖𝑠 , 𝑧
𝑗
𝑡 )

where𝑘 (𝑧, 𝑧′) = exp
(
− ∥vec(𝑧 )−vec(𝑧′ ) ∥2

2𝑏

)
is the Gaussian kernel function defined on the vectorization

of tensors 𝑧 and 𝑧′ with bandwidth parameter 𝑏, 𝑧𝑠 , 𝑧𝑡 are the multi-layer fused feature of the source
and target domains. This distance assess how similar or dissimilar the feature representations of
the two domains are, and the goal is to adjust the feature representations such that the distance
between the empirical distributions (as represented by the kernel functions) is minimized, thereby
enabling adaptation.
In the medical adaptation field, [49] explores the utility of MMD for domain adaptation in

breast and thyroid lesions in ultrasound images.[70] leverages KL divergence to synchronize the
prior distribution of the synthesized and the real target distribution. [148] estimates the mutual
information with KL divergence between the reconstruction output and segmentation result, so as
to benefit each other. [138] enforces recursively conditional Gaussian (RCG) as the joint distribution
prior, inheriting the closed form of the KL divergence term in the variational objective to make
large-sacle tasks computationally tractable. [209] uses MultiKernel Maximum Mean Discrepancy
(MK-MMD) in aligning feature distributions in breast ultrasound images. Beyond these widely
adopted metrics, novel metrics have been developed to suit specific medical tasks. [201] proposes
the Characteristic Function (CF) Distance, transforming feature distributions to frequency domain
for discrepancy calculations. [172] introduces Domain Sanity Loss, focusing on anatomical features
like centroid distance and plausibility in vertebrae prediction.
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Fig. 4. Federated Learning in MedIA. It facilitates collaborative model training across healthcare institutions
while preserving data privacy. By maintaining data decentralization, it effectively addresses data distribution
shifts without centralizing sensitive medical information, ensuring privacy and enhancing model robustness.

6 Federated Learning
Federated Learning is a pivotal model training approach designed to handle data heterogeneity
while preserving the privacy of each client. It is particularly valuable in MedIA for alleviating data
distribution shifts, allowing for collaborative enhancements across multiple healthcare institutions
without the need to centralize their data (see Fig. 4). This decentralized method ensures the privacy
of patient information, making it a practical solution for scenarios where medical data cannot be
openly shared. One prominent example of Federated Learning in practice is FedAvg [156], which
forms the basis for many modern implementations. In this model, each participating institution
trains a local model on its own data, thereby maintaining the confidentiality of sensitive information.
These institutions then send their model updates – commonly in the form of weights or gradients
– to a central server. The server aggregates these updates to enhance the global model, which is
shared back with all participating institutions after a few iterations. The mathematical formulation
is detailed as follows:

Local Update: 𝜃 (𝑡+1)
𝑘

= 𝜃
(𝑡 )
𝑘

− 𝜂∇𝐿𝑘 (𝜃 (𝑡 )𝑘
) (7)

Global Update: 𝜃 (𝑡+1) =
𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝜃
(𝑡 )
𝑘

(8)

where 𝜃𝑘 and 𝜃 respectively represent the parameters of the local model for the 𝑘-th client and the
global model. Each client 𝑘 contributes 𝑛𝑘 data points, which together total 𝑛 data points across 𝐾
clients. The learning rate is denoted by 𝜂, and ∇𝐿𝑘 (𝜃 (𝑡 )𝑘

) refers to the gradient of the loss 𝐿𝑘 with
respect to the local model parameters at the 𝑘-th client.

Similar to the Joint Training category, Federated Learning methods can also be classified based
on the degree of data labeling. However, unlike Joint Training, which primarily focuses on the label
availability of target data, Federated Learning treats both source and target data as clients that
play similar roles. Each client trains a local model that contributes to the quality of the expected
global model. Therefore, in this section, our primary concern regarding label availability extends to
all clients. Based on this, Federated Learning for MedIA under distribution shifts can be divided
into Supervised and Semi-supervised Federated Learning. Besides, it is worth noting that, given
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that medical settings often feature well-characterized source datasets, the need for Unsupervised
Federated Learning approaches [92, 149] is generally minimal.

6.1 Superivsed Federated Learning
Early research in the medical field utilizing the FedAvg [156] algorithm targeted a wide range of
medical tasks, from Brain Tumor Segmentation [175] to the detection of COVID-19 lung abnor-
malities [40, 45], MRI Reconstruction [43], Diabetic Retinopathy Classification of OCT Data [146],
and Breast Cancer Histopathological Image Classification [118]. These initial applications laid
the foundation for using Federated Learning to process sensitive medical data across distributed
datasets while maintaining privacy. Further studies explored the influence of factors like the num-
ber of healthcare providers, dataset size, communication strategies, and architecture types on FL
performance in medical contexts [2, 188]. As the field progressed, benchmarks were established
to assess the effectiveness of various FL algorithms in managing data heterogeneity [219] across
diverse medical datasets. Moving beyond the basic FedAvg paradigm, current advancements have
focused on addressing issues like Data Heterogeneity and Client Drift [32, 119], which arise from
non-IID data distributions among clients. These shifts can significantly affect model performance,
prompting researchers to develop strategies for the accuracy of FL models in healthcare settings.

6.1.1 Data Management

6.1.1.1 Data Augmentation. In Federated Learning for MedIA under distribution shifts, cross-
client data augmentation plays a crucial role in managing the inherent diversity and imbalance
of data across different clients. This strategy is designed to enhance the uniformity of feature
representations across participating clients, thus improving the overall robustness and accuracy of
the federated model. Techniques such as Fourier transform-based methods [122] are particularly
effective, as they allow for the sharing and interpolation of frequency domain information among
clients, promoting a more consistent feature representation across varied datasets. Specifically,
HarmoFL [79] leverages frequency information to unify amplitude components across clients,
which aids in maintaining consistent low-level visual features. Other systematic augmentation
techniques [17, 123, 154, 214] explore various augmentation strategies to combat data diversity
and imbalance. These techniques vary in their approaches but collectively contribute to a more
equitable and effective training process, enhancing the ability of federated models to generalize
across diverse environments and data conditions.

6.1.2 Model Design

6.1.2.1 Novel Architecture Design. Some strategies specifically address distribution shifts by
developing tailored model architectures. For instance, SU-Net [224] enhances standard U-Net
with inception modules and dense blocks to manage multi-scale challenges effectively. Similarly,
FedDAvT [102] leverages Transformer architecture to facilitate domain adaptation for Alzheimer’s
disease diagnostics. Adversarial and generative networks are introduced to refine federated learning,
focusing on aligning or adapting feature spaces across different clients [33, 59].

6.1.3 Optimization Strategy

6.1.3.1 Metric Learning. Several methods utilize metric learning to enhance consistency between
different clients in federated settings. For instance, FedIIC [205] implements two-level contrastive
learning to optimize both intra- and inter-client feature consistency, ensuring uniformity in the
learned representations. FedCL [144] focuses on reducing the feature distance between successive
local and global models, which helps stabilize the training process. Similarly, FedDP [195] improves
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model uniformity across clients by penalizing inconsistencies during the learning phase. Addition-
ally, LC-Fed [196] employs contrastive site embedding and makes prediction-level adjustments to
enhance personalization.

6.1.3.2 Novel Training Strategies. Novel Training Strategies are being explored to enhance the
efficacy and adaptability of models. For example, FedSM [208] optimizes model selection based
on data distribution during inference, while FedCross [210] employs a unique approach that
involves sequential training without the need for model aggregation. Additionally, strategies such
as the Dropout, Mixture of Experts and Split Learning have been introduced to improve model
effectiveness [36, 55, 120, 234]. These innovative methods collectively contribute to more secure
and resilient model training and deployment.

6.1.3.3 Aggregation Weight Calibration. In Federated Learning for MedIA, aggregation weight
calibration is a sophisticated optimization strategy that refines how global model updates are
weighted, taking into account more than data volume. This method involves adjusting the influence
of each client’s local update on the global model by considering factors such as the stage of training,
client performance, and similarity between client models and the global model. For example,
[161, 176] highlight strategies where weights are calibrated based on the training progress and
the performance metrics of clients. Additionally, the similarity-based approach [35, 90, 223, 235]
assesses how closely aligned each client’s data distribution or model parameters are with the
global model. This alignment influences their weights during aggregation, promoting updates that
are more representative of the overall data characteristics. Moreover, FedAWA [230] introduces
an innovative twist by employing reinforcement learning to dynamically adjust client weights.
This system continually learns and updates based on data distribution and feedback from client
performance, optimizing the aggregation process to ensure the global model remains robust and
accurate across varying conditions.

6.1.3.4 Parameter Calibration. Parameter calibration also plays a crucial role, specifically for
addressing the conflict between the local and global models. It involves strategically adjusting
model parameters to ensure that the collective learning benefits all participating clients. Efforts
include rescaling local parameters [225] and mixing local and global gradients [80] to enhance
model convergence and stability. [27] proposes a Deputy-Enhanced Transfer strategy at the client
site. It firstly leverages a deputy model to receive aggregated parameters from the server, and then
smoothly transfers the global knowledge to the personalized local model. Some other strategies
emphasize fairness, such as those aiming to equalize training loss by adjusting the model parameters
such that all hospitals have a similar training loss [67]. This approach ensures that no single client’s
data disproportionately influences the model, thus maintaining uniformity in model performance
regardless of the data source.

6.2 Semi-supervised Federated Learning
In the diverse landscape of Federated Learning, Semi-Supervised Federated Learning (SSFL) emerges
as a pivotal area of exploration, particularly suited to complex environments like healthcare, where
only a subset of clients possess fully labeled data, while a significant portion operates with unlabeled
datasets. By incorporating techniques from semi-supervised learning, SSFL effectively utilizes sparse
labels to extrapolate knowledge and enhance learning from the extensive unlabeled data available.
This approach not only broadens the applicability of Federated Learning in the medical field but
also adeptly addresses the latent data heterogeneity challenges that emerge when the lack of clear
labels obscures underlying data variations.

6.2.1 Data Management
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Fig. 5. Fine-tuning in MedIA: It adapts pre-trained models to specialized datasets, particularly when privacy
concerns limit data sharing and direct collaborations are impractical. This approach enables healthcare
institutions to leverage the valuable prior knowledge with minimal data exchange.

6.2.1.1 Pseudo-labeling. Several innovative approaches have been developed to enhance the
utility of pseudo-labeling in federated settings. [202] introduces a novel method that integrates
prototype-based pseudo-labeling with contrastive learning, a technique also employed by [168].
Additionally, [137] enhances pseudo-label generation by incorporating a self-supervised rotation
loss, which provides consistent regularization across unlabeled datasets. Further, [134] improves
the connection between labeled and unlabeled data by aligning disease relationships across clients,
effectively compensating for the lack of task-specific knowledge in unlabeled clients and enhancing
the extraction of discriminative information from unlabeled samples.

6.2.2 Model Design

6.2.2.1 Transformer-based Architecture. Transformer offers a robust framework for leveraging
both labeled and unlabeled data within a single client. For example, [212] exemplifies a specialized
approach where a self-supervised learning framework is implemented using Transformer archi-
tectures. This method starts with masked image modeling, a self-supervised task that trains the
model to predict the portions of images that are intentionally obscured. This phase harnesses the
abundant unlabeled data, allowing the model to learn rich, generalized features without requiring
too many explicit labels.

6.2.3 Optimization Strategy

6.2.3.1 Advanced Optimization Strategies in SSFL also address the dual challenges of data scarcity
and distribution heterogeneity. One innovative approach is the Federated Drift Mitigation (FedDM)
framework [250], which achieves robust gradient aggregation by resolving conflicts between
gradients at different network layers, as guided by the historical gradients of the global model.
Another strategic implementation is FedCy [86], designed for surgical phase recognition. This
method integrates dual training objectives: it applies consistency learning to exploit the temporal
and spatial consistencies in the unlabeled data, alongside contrastive learning techniques to enrich
the learning from sparsely labeled data.



Navigating Distribution Shifts in Medical Image Analysis: A Survey 17

7 Fine-tuning
Fine-tuning plays a vital role in enhancing the adaptability and performance of pre-trained models
across a wide range of applications. This process involves adjusting a model that has been pre-
trained on a large, generic (source) dataset to perform effectively on a different, often smaller and
more specialized (target) dataset. In medical scenarios, Fine-tuning proves particularly effective
when privacy concerns preclude open data sharing, and synchronous collaborations among dif-
ferent healthcare institutions are impractical or excessively costly. This strategy enables medical
institutions to leverage pre-existing models and adapt them with minimal data exchange, effectively
addressing privacy and collaboration constraints in MedIA, as illustrated in Fig. 5. Based on the
availability of labeled data on the target domain, fine-tuning methods are classified into supervised
and unsupervised approaches. As we move from supervised to unsupervised settings, the com-
plexity increases but so does the significance of the application, offering broader adaptability to
real-world challenges where labeled data are limited.

7.1 Supervised Fine-tuning
Supervised Fine-tuning stands out as a potent method for enhancing diagnostic accuracy in MedIA.
This technique primarily involves applying specific pre-trained networks, such as VGG [181]
and AlexNet [98], initially trained on general images like ImageNet [34], to more specialized
medical imaging tasks. Research exemplified by studies [1, 31, 91, 186] demonstrates how these
models transition to applications in medical imaging, including tumor classification and chest X-ray
analysis, leveraging their capability to generalize features across diverse visual domains for precise
medical diagnostics. Fine-tuning these networks often requires minimal adaptation design, making
it a straightforward approach to boost performance in medical tasks. Notable successes also include
adapting networks for Alzheimer’s diagnosis [68] and employing the Med3D network for detailed
lung segmentation and nodule classification [25].

7.1.1 Model Design

7.1.1.1 Novel Strategies and Structures. Beyond simply evaluating on different pre-trained net-
work architectures, some research have focused on novel strategies and structures for rapid and
accurate domain adaptation, while preserving existing knowledge. [193] introduces ContextNets, a
memory-augmented network for seamless domain adaptation in semantic segmentation without the
need for extensive retraining. In contrast, [105] employs Elastic Weight Consolidation to maintain
performance by encoding information from previous tasks, without extra data storage. Furthermore,
[84] optimizes batch normalization to swiftly adjust to new domains while maintaining shared
convolutional layers across all domains.

7.2 Unsupervised Fine-tuning
Unsupervised Fine-tuning in MedIA is an innovative response to the constraints of traditional
supervised fine-tuning that rely heavily on labeled target datasets which are often unavailable in
healthcare scenarios. This approach, crucial in healthcare where rapid adaptation is required to
varying patient data, is characterized by two primary branches: Source-Free Domain Adaptation
(SFDA) [29] and Test-time Adaptation (TTA) [194]. Both are designed to adapt models dynamically
to new and changing conditions without the need for source data at the time of inference, thus
directly addressing the challenges of data privacy. SFDA achieves this by transferring knowledge
learned during training and applying it to new test samples through adaptive modules or auxiliary
self-supervised tasks, such as rotation prediction. This allows the model to train on the target
distribution for multiple epochs before making predictions, providing a proactive adaptation
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approach. On the other hand, TTA takes on a more challenging task by requiring the model to
adapt in real-time to a continuous stream of test data, making no prior adjustments during the
training phase. This method is model-agnostic and focuses on immediate, on-the-fly adjustments
to effectively process and respond to incoming data. Both strategies share the common goal of
enabling efficient model adaptation in unsupervised settings, ensuring that medical diagnostics
remain robust and accurate even when faced with data that significantly deviates from previously
seen examples.

7.2.1 Data Management

7.2.1.1 Pseudo-labeling. An intuitive solution for SFDA/TTA is to use the source model to
generate pseudo labels [28, 204, 228, 245] for the target domain data and thus convert the problem
into a supervised one on the target domain. However, these pseudo labels often contain noise
due to domain discrepancies, making it essential to refine them for accuracy. Techniques include
adaptive pseudo-labeling which uses dual-classifiers to enhance label confidence in [106], denoised
pseudo-labeling with uncertainty and prototype distance estimation for precise segmentation [22],
and employing shape compactness metrics for label reweighting [215]. Additionally, in [108], a
system integrates an image quality assessor and an irregular structure detector is developed to
select optimal pseudo-labels for training. [75] uses the greatest union mask of multiple predictions
to generate proxy labels for model fine-tuning, while [228] selects low-entropy pixels as reliable
labels and applies contrastive learning to tighten the target feature distribution.

7.2.1.2 Image Generation. Image generation techniques facilitate the adaptation of models to
new domains by enriching the dataset with varied and representative examples. For example,
[169] utilizes basic image augmentation combined with causal interventions to generate diverse
datasets that ensure consistent predictions and the elimination of confounding factors. Similarly,
[222] employs patch-wise processing augmented with a Transformer structure to enhance data
variability effectively, while [191] proposes the first learnable test-time augmentation policy that
dynamically selects most effective augmentation techniques. This adaptability allows for optimal
model performance even under varying operational conditions. Moreover, some strategies focus
on transforming the style of data between the source and target domains to better align the
characteristics of the target data with the learned source domain model. For instance, [61] applies
autoencoders to adjust test images to resemble source images more closely, enhancing the model’s
applicability to new data. Additionally, [244] and [215] explore generative techniques. The former
uses a class-conditional generative adversarial network to create target-style data from random
noise, while the latter leverages Fourier transformation to generate source-like images through a
style-mining generator. [72] further innovates by learning a domain-aware prompt that modifies
target inputs to better match the source domain style, facilitating smoother domain adaptation.

7.2.2 Model Design

7.2.2.1 Batch Normalization. Batch Normalization has been widely explored in adaptation tasks
as normalization statistics are associated with the domain distribution. They can be directly obtained
through pre-trained model and taken as the source information. Given a mini-batch B = {𝑥𝑛}𝑁𝑛=1
where 𝑥𝑛 ∈ R𝐹 is a feature vector (with 𝐹 denoting the number of feature channels and 𝑁 the batch
size), BN normalizes each feature dimension 𝑓 as follows:

𝑥𝑛,𝑓 =
𝑥𝑛,𝑓 − 𝜇B,𝑓
√
𝜎B,𝑓 + 𝜖

· 𝛾𝑓 + 𝛽𝑓 (9)
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where 𝜇B,𝑓 and 𝜎B,𝑓 are the running mean and variance for the 𝑓 -th feature of mini-batch B, re-
spectively. The parameters𝛾𝑓 and 𝛽𝑓 are the learned scale and shift factors for affine transformation,
with 𝜖 being a small-offset to avoid division by zero. [143] proposes an exponential decay scheme
for the normalization statistics in adaptation stage to gradually learn the target domain-specific
mean and variance. [72] aligns the source and target normalization statistic discrepancy for learning
a prompt to make the target inputs be treated as the source. More recently, [140] explores domain-
specific and shareable batch normalization statistics for adaptive BN-based adaptation, while [183]
proposes to incorporate the concept of class diversity to address more realistic mini-batch problem.

7.2.2.2 Novel Strategies and Structures. The field has seen several structural innovations aimed
at overcoming specific adaptation challenges. [47] introduces an auxiliary rotation classifier to
improve adaptation via self-training. Similarly, [151] utilizes multiple diverse classifiers to address
test label distribution shifts, and [203] employs decoder duplication during the adaptation stage to
ensemble diverse target inputs. Y-shaped architectures with dual decoders are used for enhanced
denoising and segmentation [85, 200]. [240] further develops a supplementary network to adaptively
combined with the main outputs during inference.

7.2.3 Optimization Strategy

7.2.3.1 Entropy Minimization. Entropy minimization is widely-used to handle unlabeled data.
Mathematically, the entropy of a prediction can be expressed as follows:

𝐻 (𝑝) = −
𝐶∑︁
𝑖=1

𝑝𝑖 log𝑝𝑖 (10)

where 𝑝 represents the predicted probability distribution over𝐶 classes, and 𝑝𝑖 is the probability of
the 𝑖-th class predicted by the model. The goal is to minimize this entropy 𝐻 (𝑝) across the dataset,
thereby encouraging the model to produce more decisive outputs. This approach is first introduced
by Tent [194] into general TTA tasks, which proposes minimizing the mean entropy over the test
batch to update the affine parameters of the batch normalization layers in the pre-trained model.
This strategy has been adopted in many cases [8, 9, 64, 143, 240] in medical TTAs.

7.2.3.2 Dynamic Adjustment of Learning Rates. Dynamic adjustment of learning rates based on
distribution shifts helps models adapt more effectively during test-training stages. For example,
[216] proposes that samples with larger distribution shift should result in larger update. It makes
adjustment by calculating the divergence between the model outputs and its nearest neighbors
in a memory bank. [236] refines this strategy by assessing category-wise discrepancies with an
uncertainty estimation module.

7.2.3.3 Anatomical Information. Leveraging the anatomical information as a prior for loss design
offers a promising direction for enhancing the accuracy and reliability. For instance, [130] utilizes a
shape dictionary, integrating general semantic shapes extracted from source data. [247] incorporates
the shape information with the signed distance field which measures the distance between any
pixel to the nearest object boundary and the relative position. [8, 9] leverages the class-ratio as a
supervision which is estimated from anatomical knowledge available in the clinical literature. [12]
uses anatomically-derived loss functions that penalizes unrealistic bone lengths and joint angles in
3D pose estimation. [69] proposes contour regularization loss for constraining the continuity and
connectivity. [121] expands the lesion click (i.e., the center of the nodule) into an ellipsoid mask,
and use it as the supervised information for test training.
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Fig. 6. Domain Generalization in MedIA: It prepares models for unseen data by generalizing from source
datasets without target data access. This proactive approach ensures robustness in unfamiliar environments.
The shown flowchart is Single-source Domain Generalization.

8 Domain Generalization
Domain Generalization (DG) is an advanced deep learning technique designed to prepare models
for handling unseen, out-of-distribution data. This challenge is especially relevant in MedIA, where
real-world operational constraints often make target datasets from new domains inaccessible
or unknown. In such cases, DG methods become essential, enabling models to generalize from
available source data to new environments without prior exposure to specific target data (see toy
example in Fig. 6). This proactive approach ensures that medical models remain robust and accurate,
ready to cope with potential unfamiliar environments. Furthermore, unlike other categories that are
typically divided from simple to complex based on the label availability of target data, DG assumes
that no target data is available. The complexity of tasks within this category primarily hinges on
the nature of the source data. Specifically, DG techniques can be divided into two main types:
Multi-source Domain Generalization (MDG) and Single-source Domain Generalization (SDG). MDG
capitalizes on the diversity of multiple source datasets to extract and decouple domain-invariant
and domain-specific features, thereby enhancing the model’s generalizability using the domain-
invariant component. Conversely, SDG, limited to a single source, faces greater challenges and often
relies on additional data augmentation strategies to increase the model’s generalization capabilities
under more restrictive conditions.

8.1 Multi-source Domain Generalization
Multi-source Domain Generalization (MDG) operates under the premise that the unseen target
domain shares the commonalities with the source dataset. The main challenge here is effectively
extracting and balancing domain-invariant features – which apply across all datasets – and domain-
specific features – which are unique to each dataset. Techniques such as feature disentanglement
and meta-learning are often employed to address these challenges, helping to enhance the model’s
ability to generalize while reducing the risk of overfitting to any single source domain.

8.1.1 Model Design

8.1.1.1 Meta-learning. Meta-learning [65] is a powerful strategy for enhancing model gener-
alization across unknown data distributions. This approach involves simulating domain shifts



Navigating Distribution Shifts in Medical Image Analysis: A Survey 21

during training through “episodes”, where data from multiple sources is split into meta-train Dtrain
and meta-test Dtest sets. This split mirrors real-world domain shifts, preparing the model for new
domains or distributions. The model first learns from the meta-train set and is then tested on the
meta-test set to evaluate its adaptability to new situations. Adjustments are made based on its
performance to enhance its generalization capabilities. This process is formulated as:

𝜙∗ = MetaLearn(Dtrain), 𝜃∗ = Learn(Dtest;𝜙∗) (11)

where 𝜙∗ denotes the meta-learned parameters, which are then used to learn the task-specific model
parameters 𝜃 ∗ on the meta-test set. Following this framework, [132] introduces a shape-aware meta-
learning scheme that incorporates anatomical integrity, [111] combines meta-learning with style-
feature flow generation for confounding factors elimination, and [131] uses style-transferred images
as meta-tests, designing a new boundary-oriented objective for meta-optimization considering the
specific challenges in medical image segmentation.

8.1.2 Optimization Strategy

8.1.2.1 Shape-based Regularization. Shape-based Regularization is a powerful tool, harnessing
the continuous and coherent nature of anatomical structures and the domain-invariant characteris-
tics of their contours. Except for combined with the meta-learning approaches [111, 131, 132] for
supervision in meta-test optimization, some methods directly use the anatomical knowledge as
prior information during training. For example, [166] integrates fixed Sobel kernels for contour
enhancement and a convolutional autoencoder for learning anatomical priors, which inversely
projects the mask and prediction to the feature space for further alignment.

8.1.2.2 Latent Space Regularization. Latent Space Regularization focuses on modeling inter-
domain relationships and perform regularization in the latent feature space to promote gener-
alization. Notably, [110] introduces a rank regularization term to constrain the complexity of
feature representations and restrict the latent features to follow a pre-defined prior distribution,
while [38] implements semantic feature regularization during the meta-test phase with dual losses
that maintain global inter-class relationships and tighten intra-class features.

8.2 Single-source Domain Generalization
Single-source Domain Generalization (SDG) presents a unique set of challenges as it relies on
data from only one source to prepare models for unseen domains. This restriction is particularly
pronounced in the medical field, where variability in data can be extreme and the stakes of ac-
curate generalization are high. The primary challenge in SDG is the limited diversity, which can
make models prone to biases and over-fitting, reducing their ability to perform well on novel,
out-of-distribution medical data. To combat this, SDG strategies often incorporate robust data
augmentation techniques – such as synthetic image generation, geometric transformations, and
intensity variations – to artificially expand the dataset’s diversity and simulate potential unseen
scenarios. Additionally, regularization techniques and invariant feature learning are used to further
enhance the model’s generalization capabilities.

8.2.1 Data Management

8.2.1.1 Pixel-level Augmentation. Pixel-level Augmentation techniques directly manipulate the
pixel values. This method is primarily based on the premise that variations in imaging modalities,
acquisition protocols, and hardware can induce significant discrepancies in image characteristics
such as texture, intensity, and contrast. For example, [233] introduced BigAug, a deep stacked general
transformation approach to systematically evaluate augmentation effects on model generalization.
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Specialized approaches within the medical field, such as the use of Bézier Curves by [246] to address
gray-scale discrepancies, and the simulation of MRI distortions by [83], focus on medical-specific
image traits. [162] uses causal inference methods to reflect acquisition shifts and [184] explores
category-level augmentation based on class-level representation invariance. [73] combines the
augmentation strategies both in [233] and [184]. [21] expands the style space through adversarial
training and finds the worst-case style composition to generate the samples. [211] further refines
this strategy by introducing randomness to the generated domain through a adaptive instance
normalization block, so that the changes are limited to the textures.

8.2.1.2 Feature-level Augmentation. Some augmentation strategies delves deeper into themodel’s
internal workings, focusing on the manipulation of learned feature representations. For instance,
[20] masks features channel-wisely and spatially to generate diverse challenging samples.

9 Future Directions
Advancing medical image analysis (MedIA) in the face of distribution shifts requires not only
addressing current challenges but also exploring innovative research pathways that can extend the
capabilities of deployable technologies. In this section, we identify and discuss several promising
directions—namely, continuous learning systems, the utilization of vision-foundation models, and
multi-task/multi-modal learning under distribution shifts. By delving into these areas, we aim to
highlight potential strategies that can overcome existing limitations and propel the field toward
more robust and adaptable MedIA solutions.

9.1 Continuous Learning Systems for MedIA
In medical imaging analysis, continuous learning systems [51, 237] are essential for adapting to
dynamic environments where data distributions evolve over time. As medical practices advance
and new clinical data becomes available, models must accommodate these shifts without the need
for complete retraining. For instance, data collected over different time periods – such as imaging
acquired from new devices, updated imaging protocols, or the emergence of previously unseen
disease variants – leads to temporal distribution shifts that challenge conventional static models.
Continuous learning addresses these shifts by incrementally updating the model as new data
arrives, ensuring that it remains relevant to evolving clinical scenarios. Importantly, these systems
are designed to combat catastrophic forgetting, where a model loses performance on previously
learned tasks as it incorporates new knowledge. Techniques such as rehearsal, regularization, and
memory-based strategies allow continuous learning models to maintain stable performance across
a broad spectrum of conditions, ultimately improving adaptability in clinical workflows where the
nature of data is in constant flux.

9.2 Harnessing Vision-Foundation Models for MedIA
The utilization of Vision-Foundation Models (VFMs) presents a promising direction for mitigat-
ing distribution shifts in MedIA. For instance, existing research has led to the development of
MedSAM [150] and MedCLIP [199], which are fine-tuned versions of SAM [95] and CLIP [170],
respectively. MedSAM excels in universal segmentation, allowing it to adapt to diverse medical
datasets and imaging protocols, thereby showing its robustness against variations in data distribu-
tion. MedCLIP leverages zero-shot learning capabilities, aiming to recognize and analyze unseen
medical images based on the embeddings of created prompts for each disease class, which is invalu-
able in clinical settings with limited labeled data. Even when VFMs are not used for direct prediction,
they can provide additional information to local models to assist in prediction and analysis. For
example, VFMs can highlight regions of interest, enhancing the explainability and credibility of the
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models [66, 157, 163]. Further investigation could be the combination of these models for innovative
solutions, such as a comprehensive diagnostic tool that integrates segmentation and contextual
analysis, providing real-time insights that adjust to new imaging conditions and patient histories.
Moreover, leveraging existing large models to enhance the functionality of another model, thereby
reducing the impact of distribution shifts, is a promising direction worth exploring. For example,
utilizing CLIP to generate visually descriptive sentences related to the segmentation target could
enable SAM to effectively perform zero-shot medical segmentation [4]. Future research should
explore these synergies, potentially leading to multi-task learning frameworks that simultaneously
address various medical tasks, thus enhancing diagnostic accuracy and personalizing treatment
strategies. By pursuing these avenues, we can unlock the full potential of VFMs to create resilient
and adaptable systems that significantly improve healthcare outcomes.

9.3 Multi-task/modal Learning under Distribution Shifts
Multi-task [241] and multi-modal [15] learning frameworks offer a promising avenue for addressing
the complexities inherent in medical image analysis, particularly when data arises from diverse
sources or modalities. These models, designed to jointly process data such as medical images, textual
reports, and real-time procedural videos, facilitate a more comprehensive understanding of patient
conditions. For example, a multi-modal system could simultaneously perform tumor segmentation
from MRI, extract pertinent clinical information from patient records, and analyze surgical video
footage to assess tissue responses. Such integrative models are robust against distributional shifts
that occur between different data types, ensuring that the system can handle variable quality and
types of inputs. Moreover, by leveraging shared representations across tasks and modalities, the
model is better equipped to capture general, robust features rather than task-specific nuances,
which might overfit to a single type of data.

10 Conclusion
In this paper, we provide a comprehensive examination of how DL models can be adapted to handle
the significant challenge of distribution shifts in MedIA. By categorizing adaptation strategies
into Joint Training, Federated Learning, Fine-tuning, and Domain Generalization, we align these
methodologies with the practical constraints of Data Accessibility, Privacy Concerns, and Collabo-
rative Protocols that healthcare institutions face. Each strategy offers tailored solutions to specific
challenges, ensuring DL models’ reliability and effectiveness across various medical environments.
Looking forward, refining these adaptive techniques to meet emerging data challenges and ad-
vancing technological capabilities will be crucial. Our survey aims to serve as a foundational guide
for further research and practical implementation, fostering developments that enhance both the
precision and accessibility of MedIA applications in improving patient care.
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