
1

Un-mixing Test-time Adaptation under Heterogeneous Data Streams

Zixian Su∗, Jingwei Guo∗, Xi Yang†, Qiufeng Wang, Kaizhu Huang†

Abstract—Deploying deep models in real-world scenarios re-
mains challenging due to significant performance drops under
distribution shifts between training and deployment environ-
ments. Test-Time Adaptation (TTA) has recently emerged as a
promising solution, enabling on-the-fly model adaptation with-
out access to source data. However, its effectiveness degrades
significantly in the presence of complex, mixed distribution
shifts – common in practical settings – where multiple latent
domains coexist. Adapting under such intrinsic heterogeneity,
especially in unlabeled and online conditions, remains an open
and underexplored challenge. In this paper, we study TTA
under mixed distribution shifts and move beyond conventional
homogeneous adaptation paradigms. By revisiting TTA from a
frequency-domain perspective, we observe that distribution het-
erogeneity often manifests in Fourier space – for instance, high-
frequency components tend to carry domain-specific variations.
This motivates us to perform domain-aware separation using
high-frequency texture cues, making diverse shift patterns more
tractable. To this end, we propose FreDA, a novel Frequency-
based Decentralized Adaptation framework that decomposes
globally heterogeneous data into locally homogeneous compo-
nents in the frequency domain. It further employs decentralized
learning and augmentation strategies to robustly adapt under
complex, evolving shifts. Extensive experiments across various
environments (corrupted, natural, and medical) demonstrate the
superiority of our proposed framework over the state-of-the-arts.

Index Terms—Test-time Adaptation, Transfer Learning

I. INTRODUCTION

DEEP learning models often suffer significant performance
degradation when deployed in environments where the

data distribution differs from that of the training set – a
challenge known as domain shift [1], [2]. Recently, Test-
Time Adaptation (TTA) [3]–[10] has emerged as a promising
solution by refining model parameters to better align with the
encountered data at inference time. It leverages the incoming
data stream for real-time adjustments without the need for
retraining on a labeled dataset, enabling swift model adaptation
to unpredictable data characteristics during deployment.

Despite their success, current TTA models often are limited
to ideal testing conditions, typically involving homogeneous
test samples with similar types of distribution shifts. In reality,
distribution shifts are mixed, overlapping, and even con-
flicting [11]–[15]. For instance, photo management software
handles diverse corruptions, such as noise, blur, compression;

Zixian Su is with Beijing Academy of Artificial Intelligence, Beijing,
China and University of Liverpool, Liverpool, UK (E-mail: zxsu@baai.ac.cn);
Jingwei Guo is with Alibaba Group, Beijing, China and University of
Liverpool, Liverpool, UK (E-mail: jingweiguo19@outlook.com); Xi Yang and
Qiufeng Wang are with Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu,
China (Email: xi.yang01@xjtlu.edu.cn; qiufeng.wang@xjtlu.edu.cn); Kaizhu.
Huang is with Duke Kunshan University, Kunshan, Jiangsu, China (Email:
kaizhu.huang@dukekunshan.edu.cn).

∗Equal contribution.
†Corresponding authors.

Continual:

Single:

Mixed:

t = 1 t = 2 t = 3 t = n

Target Domains
Gaussian Noise Fog Zoom Blur Frost Elastic Glass Blur Snow Jpeg

t = 4

Er
ro

r R
at

e 
(%

)

15

25

35

45

TENT SAR ROTTA FreDA (Ours)

Single Continual Mixed

(a)

(b)

Fig. 1: (a) Illustration of three TTA scenarios with single, con-
tinual, and mixed domain shifts. (b) Classification error rate
on CIFAR-10-C across different TTA settings: performance of
conventional models drops sharply under mixed domain shifts.

medical imaging platforms manage inconsistencies from var-
ied acquisition methods; and autonomous driving systems face
fluctuating conditions like lighting, weather, and road types.

Such complexity poses serious challenges for existing meth-
ods. While recent efforts have extended TTA to continually
changing environments [5], they typically assume a uniform
target domain at each time step, as illustrated in the continual
setting in Figure 1 (a). Some methods periodically reset the
model to its source pre-trained state [7], [9] to mitigate the
cumulative effect of sequential distribution shifts on adap-
tation. Others down-weight outlier target samples [6], [10]
to suppress the impact of abrupt or rare shifts. Although
these strategies aim to improve robustness under dynamic
conditions, they fall short when facing the entangled / mixed
real-world distributions (see Figure 1 (b)). Their shortcomings
stem from a shared limitation: they lack the capacity to
disentangle or localize domain variations. As a result, they
often overfit to dominant patterns or suffer from catastrophic
forgetting, failing to be deployed in realistic, heterogeneous
data streams.

Capturing such intrinsic heterogeneity under unlabeled,
online conditions is particularly challenging, and effective
adaptation in this setting remains an open problem. To tackle
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this, we propose shifting from coarse, homogeneous adap-
tation to a fine-grained strategy that explicitly disentangles
heterogeneous shifts. Our approach leverages the frequency
information to disentangle domain variations, which naturally
separates data features across frequency bands: high-frequency
components capture fine details like edges and textures, while
low-frequency components represent global structures such as
shape and illumination (Section IV). By decomposing inputs
accordingly, we better characterize distributional variations
and identify diverse shifts. Moreover, the Fourier transform
operates directly on raw pixel-level inputs, which shields the
method from performance degradation under large domain
gaps, and also enhancing adaptability and deployment effi-
ciency in real-world applications.

Building upon this insight, we introduce a framework,
termed Frequency-based Decentralized Adaptation (FreDA).
FreDA begins by partitioning incoming data in the Fourier
domain, where high-frequency components are used to group
samples with similar shift characteristics. This transforms
globally heterogeneous inputs into locally homogeneous sub-
sets before any adaptation takes place. Based on these parti-
tions, FreDA deploys multiple local models, each assigned
to a specific subset. These models adapt independently to
their respective data streams while periodically synchronizing
through parameter exchange. The aggregated parameters form
a shared base model, which is then used to reinitialize the local
models, ensuring continual and coordinated adaptation across
domains. This approach not only alleviates clustering errors
via collaborative knowledge sharing but also allows local mod-
els to capture diverse distribution shifts. To further enhance
robustness, we introduce a novel Fourier-based augmentation
scheme that improves sample quality and strengthens adapta-
tion to shift-specific characteristics.

To summarize, the main contributions of this work are three-
fold:

• We identify a key limitation of most existing TTA meth-
ods – their neglect of real-world data heterogeneity –
which leads to suboptimal performance when confronted
with mixed and diverse distribution shifts.

• We propose FreDA, a frequency-based decentralized
adaptation framework that leverages spectral decompo-
sition and localized adaptation to effectively address het-
erogeneous distribution shifts at test-time.

• We validate FreDA through extensive experiments on
corrupted, natural, and medical benchmarks, demonstrat-
ing consistent improvements over state-of-the-art methods
across various TTA scenarios.

II. CONNECTIONS TO PREVIOUS STUDIES

A. Transfer Learning, Domain Adaptation, Test-time Training,
and Test-time Adaptation

Deep neural networks often experience performance degra-
dation when deployed in environments different from their
training settings, due to distribution shifts between source
(training) and target (testing) domains. This issue is exten-
sively studied under the umbrella of transfer learning [16],
[17], which aims to transfer knowledge across domains. A key

TABLE I: Comparison of different transfer learning settings.

Topic Source
Data

Target
Labels

Online
Adaptation

Model
Agnostic

Supervised Domain Adaptation ✓ ✓ × –

Unsupervised Domain Adaptation ✓ × × –

Source-free Domain Adaptation × × × –

Test-time Training × × ✓ ×
Test-time Adaptation × × ✓ ✓

Note: TTA is the most practical setting for real-world deep model deployment.

branch of transfer learning is domain adaptation (DA) [18]–
[21], where models trained on a labeled source domain are
adapted to a target domain. Depending on the availability of
source and target data, DA can be classified into: Supervised
DA using labeled data in both source and target domains
during training; Unsupervised DA, which relies on labeled
source data and unlabeled target data; and Source-free DA,
that adapts to the target domain without access to source data,
typically due to privacy or transmission constraints.

While traditional DA methods assume access to the whole
target distribution during adaptation, such access is not al-
ways possible in real-world deployment. To address this, two
prominent test-time adaptation paradigms have been proposed:
Test-time Training (TTT) [22]–[24] introduces an auxiliary
task – often self-supervised – during pre-training. At test
time, the model optimizes this auxiliary objective to adapt
to the target distribution accordingly; Test-time Adaptation
(TTA) [3], [7], [8] poses a more demanding and practical
scenario, where the model must adapt on-the-fly to the test
stream without any prior modification during training. This
setting emphasizes the need for rapid, real-time model updates
to effectively capture the continuously incoming data. A brief
comparison of these adaptation settings is summarized in
TABLE I. Our work falls under the TTA setting, where we
propose a generalizable and robust adaptation framework that
maintains strong performance across diverse distribution shifts
and corruptions – without relying on source data or altering
the pre-training process.

B. Non-i.i.d. Test-time Adaptation

While conventional TTA methods primarily focus on single
domain shifts under the idealized independent and identically
distributed (i.i.d.) assumption, real-world deployment often
violates these conditions due to inherent data heterogeneity.
This discrepancy has motivated recent efforts to extend TTA
to more realistic settings, with two primary challenges:

1) Mixed Domains: Modern TTA methods designed for
continual domain shifts [5], [6], [9], [10], [25] have pushed be-
yond the single adaptation setting. However, these approaches
assume that the target domain is uniform at each time point –
a special case of mixed domains where the change occurs
across distinct time periods. In reality, data streams often
involve genuinely mixed domains with heterogeneous distri-
butions present simultaneously. Existing approaches primarily
focus on stabilizing model updates through periodic parameter
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Fig. 2: (a) Visual heterogeneity across five healthcare centers
in Camelyon17 dataset: Example patches showcase diverse
domain shifts that characterize mixed target domains. (b) Con-
ventional sample latent features from pretrained models fail to
separate different target subdomains, showing significant over-
lap. (c) High-frequency information enable distinct separation
of target subdomains, contrasting with the conventional ones.

resets [7], [9] or importance weighting of target samples [6],
[9], [10], but these techniques are ill-equipped to disentangle
and manage the complex interleaving of domain shifts, leading
to degraded performance. In contrast, our work adopts a data-
centric perspective by explicitly addressing mixed domains
via frequency-space decomposition, which facilitates domain
separation and proactive distribution alignment prior to model
adaptation. While recent efforts like [7] acknowledge mixed
distribution challenges under the broader “Dynamic Wild
World” paradigm, their unified treatment of diverse real-
world factors does not systematically address data hetero-
geneity. Conversely, our study directly targets the core issue
of mixed domains in TTA, introducing tailored strategies
for disentangling and adapting to co-occurring heterogeneous
distributions.

2) Dependent Sampling: The second challenge stems from
class-level dependencies introduced by temporal data sam-
pling. This topic has garnered significant research attention,
with a growing body of work [25]–[30] actively addressing
it through strategies such as pseudo-label-based rebalancing,
or extended observation windows. These approaches aim to
correct the temporal imbalance caused by skewed class dis-
tributions over time. However, unlike this these studies that
focus on class-level imbalance, our work diverges by target-
ing sample-level heterogeneity, which remains underexplored.
Specifically, we address style diversity and distributional vari-
ation at test-time – a challenge that persist even under class-
balanced conditions – to improve model robustness under
mixed-domain scenarios.

Methods C10 C100 IN

TBN (Centralized) 33.8 45.8 82.5
TBN (Decentralized) 28.5 43.2 77.6
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(b) Decentralized Adaptation

Fig. 3: Experimental Result (error rate) and t-SNE feature
visualization using TBN [31] as the pseudo-labeling method
under mixed distribution shifts, comparing centralized and
decentralized adaptation. Different colors represent different
classes. (a) Centralized Adaptation: Global BN parameters
are applied to the entire batch. (b) Decentralized Adaptation:
Localized BN parameters are tailored for clusters separated
based on high-frequency features. C10, C100, IN respectively
denotes CIFAR-10-C, CIFAR-100-C and ImageNet-C datasets.

III. PROBLEM DEFINITION OF MIXED DOMAIN SHIFTS

Test-time adaptation (TTA) aims to adjust a model qθ(y|x),
initially trained on a source dataset Ds = {(x, y) ∼ ps(x, y)},
to a target domain Dt = {(x, y) ∼ pt(x, y)} on a data stream
without accessing source data or target labels. TTA handles
covariate shift by assuming ps(y|x) = pt(y|x) while ps(x) ̸=
pt(x). This challenge intensifies when Dt contains multiple
non-i.i.d sub-distributions pti(x), such as

pt(x)← {pt1(x), pt2(x), . . . , ptN (x)}.

Specifically, we have Dt = Dt1 ∪ Dt2 ∪ · · · ∪ DtN where
x ∈ Dt1 satisfying x ∼ pt1(x). This scenario requires the
model qθ(y|x) to effectively handle the heterogeneous and
evolving target distribution to maintain robust performance.
TTA strategies must therefore refine the model to optimize
its predictive accuracy across these diverse sub-domains, en-
suring consistent and reliable performance amidst significant
distributional variability.

IV. TTA UNDER MIXED DISTRIBUTION SHIFTS: A
FOURIER PERSPECTIVE

While Test-Time Adaptation (TTA) methods excel under
single-type distribution shifts, their performance degrades
catastrophically when facing mixed distribution shifts – a
ubiquitous challenge in real-world deployment. As demon-
strated on CIFAR-10-C (Figure 1 (b)), leading methods like
TENT [3], SAR [7] and RoTTA [25] suffer 16% average ac-
curacy drop compared to single-shift scenarios. Conventional
TTA paradigms attempt to mitigate this through passive ro-
bustness measures, such as entropy regularization [3], gradient
masking [7], or model resetting [9]. These methods treat mixed



4

Gaussian Noise Fog Zoom Blur Frost Elastic Glass Blur Snow Jpeg Local Model 1

Local Model 2

Local Model 3

Local Model 4

Update

Frequency-based Clustering Decentralized Fine-tuningBatch Input Base Model  
Enhancement

Cluster 1
Cluster 2

Cluster 3
Cluster 4

Aggregation 

Amp.

Phase

Fig. 4: Illustration of Frequency-based Decentralized Learning.

distribution shifts as irreducible noise, deferring corrective
actions until model failures occur – a reactive paradigm that
inevitably compromises adaptation efficacy.

To address this, we propose a paradigm shift to proactive
distribution management – instead of demanding models to
handle arbitrary mixtures, we first resolve the heterogeneity
via frequency-space decomposition. Our key insight is that
mixed distributions exhibit spectral signatures that can be
disentangled before model adaptation begins. As evidenced
in Figure 2 (c), high-frequency components naturally separate
distinct shifts without relying on error-prone model features
(see Figure 2 (b). This theoretically grounded decomposition
converts the ill-posed mixed-shift adaptation into multiple
well-conditioned homogeneous-shift problems, effectively cre-
ate an ideal adaptation environment from chaotic real-world
streams. Crucially, this decomposition enables a decentralized
adaptation where we can deploy domain-specific models tai-
lored to high-frequency-separated clusters. Take TBN [31] as
an example: while its centralized variant recalculates batch
normalization (BN) statistics globally (treating heterogeneous
data as a single distribution), our decentralized adaptation
computes localized BN parameters within each spectrally
disentangled cluster. As shown in Figu 3, this context-aware
estimation preserves semantic discriminability: samples ex-
hibit tighter within-class cohesion and sharper between-class
boundaries compared to the blurred separability of centralized
adaptation. Building on these insights, the following section
details how leveraging the frequency domain enhances TTA
methods for realistic scenarios with mixed distribution shifts.

V. FREQUENCY-BASED DECENTRALIZED ADAPTATION

The previous discussion highlights how heterogeneity
within target distributions can hinder effective model adapta-
tion. This naturally raises the question: How can we manage
such distributional heterogeneity to enable better adapta-
tion? As outlined earlier, distinguishing samples associated
with different distribution shifts offers a promising pathway.
Building on this insight, we address the TTA problem by

leveraging high-frequency components in the data and propose
a novel framework termed Frequency-based Decentralized
Adaptation (FreDA). It partitions target samples into multiple
homogeneous subdomains in the Fourier space, facilitating
more accurate model adaptation. This is further enhanced
by a frequency-based augmentation strategy that enriches
each subdomain with diverse samples, strengthening model
robustness.

A. Frequency-based Decentralized Learning

Fourier transform offers an effective method to extract
different frequency components from images, with high-
frequency information particularly useful for capturing fine-
grained details such as texture and noise. These details often
highlight subtle variations among different distribution shifts.
Based on this insight, we propose a module termed Frequency-
based Decentralized Learning. It leverages frequency informa-
tion extracted from the pixel space to systematically partition
data into multiple homogeneous subsets, enabling multiple
local models to specialize in capturing each distribution shift
individually. Concurrently, our method enables collaborative
learning by allowing periodic parameter sharing among these
local models via an enhanced base model, thereby boosting
overall adaptability to diverse distribution shifts.

1) Frequency Feature Extraction: We start by extracting
frequency domain features from the input images. Let X ∈
Rn×c×h×w denote a batch of input images, where n is the
batch size, c is the number of channels, h and w are the
height and width. We first apply a Fourier transform F
to each image xi. This transform converts the image from
the spatial domain to the frequency domain, producing a
complex-valued representation F(xi) ∈ Ch×w×c that contains
both real R(xi) and imaginary part I(xi). Next, we com-
pute the amplitude spectrum A(xi)(u, v) using A(x)(u, v) =√
R2(x)(u, v) + I2(x)(u, v). It reveals the intensity of the

frequency content, e.g., high-frequency amplitudes highlight
edges and fine details while low-frequency amplitudes em-
phasize the overall structure and gradual changes. Then, we
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filter out low-frequency elements using mask M(u, v) =
1
((
u < h

4 ∨ u > 3h
4

)
∨
(
v < w

4 ∨ v > 3w
4

))
to emphasize the

high-frequency components G(x)(u, v) that are more likely to
indicate shifts in distribution:

G(x)(u, v) = A(x)(u, v) ·M(u, v). (1)

2) Frequency-Based Clustering: We then employ a clus-
tering algorithm (e.g., K-means) to partition the frequency
features into K clusters, each corresponding to a different type
of distribution shift. The process is formalized as:

min
C,Z

n∑
i=1

∥Ahf,i −CZi
∥22 , (2)

where Ahf,i = vec(G(xi)), C ∈ CK×d, Z ∈ {1, . . . ,K}n
denotes the 1D high-frequency component of the amplitude
spectrum, the centroids of the clusters and the cluster assign-
ments for each image. hf refers to high-frequency compo-
nents, and d = h× w × c is flattened dimension.

3) Decentralized Fine-tuning: Test-time fine-tuning is then
decentralized across these clusters, allowing for specialized
adaptation within each subgroup: For each cluster k, we adapt
a specialized model qθk(y|x) that is fine-tuned using only the
data within that cluster:

θ∗k = argmin
θk

Ex∼pt,k
[L(qθk(x))] , (3)

where pt,k represents the data distribution within cluster k,
and L is the loss function. The predictions of each iteration
are collected and sorted after the local fine-tuning.

4) Base Model Enhancement: To integrate knowledge from
all subnetworks and prevent degradation on specific subdo-
mains, we periodically aggregation their parameters at inter-
vals of time T :

θbase =

K∑
k=1

(
|Dk|∑K
j=1 |Dj |

θk

)
, (4)

where |Dk| denotes sample number in cluster k. This ag-
gregation step combines the parameter updates from each
subnetwork proportionally to its cluster size. The updated
parameters θbase are then distributed back to each subnetwork,
initializing them for the next batch of training: θk ← θbase.

B. Frequency-based Augmentation

While decentralized learning effectively mitigates batch-
level heterogeneity, it may falls short in accurately charac-
terizing individual distribution shifts – largely due to limited
batch size and noise introduced by coarse clustering. To im-
prove target data quality, TTA methods commonly adopt data
augmentation as a practical strategy to enhance model gen-
eralization. However, conventional augmentation techniques
– typically borrowed from standard computer vision tasks
such as rotation, cropping, and mixup – are primarily tailored
for single-shift scenarios. They often fail to provide the tar-
geted, distribution shifts-aware augmentation as required under
mixed domain shifts. To this end, we propose a frequency-
based augmentation strategy tailored for TTA in mixed-shift

Algorithm 1 Framework of Frequency-based Decentralized
Learning and Augmentation

Require: Step t, Input batch X = {x1, x2, ..., xn} ∈ Rn×h×w×c,
Pretrained source model qθ , Initialize Feature Repository and Local
Sample Pool R,Sk ← ∅, CLUSTER NUM K, KMEANS SIZE N ,
COMM INTERVAL f ;
Step 1: Extract Frequency Features

1: for i = 1 to n do
2: Ahf,i ← vec(G(xi)) ▷ Extract high-freq components
3: end for

Step 2: Dynamic Clustering
4: R← R∪ {Ahf,i}ni=1 ▷ Frequency Information Repository
5: R← R[(|R| −N + 1) :] ▷ Keep the last N entries for kmeans

clustering
6: (Ct,Z)← K-means(R,K,Ct−1) ▷ Obtain Cluster Labels

Z = {Zi}ni=1 (Eq. 2)
Step 3: Local Model Training

7: for cluster k ∈ {1, . . . ,K} do
8: Sk ← Sk ∪ {xi | Zi = k} ▷ Gather samples for cluster k
9: Sk ← Sk[(|Sk| −n+1) :] ▷ Keep the last batch size = n entries

10: S′k ← select samples(Sk) ▷ Select samples (Eq. 5)
11: for each xi ∈ S′k do
12: x̃i ← augment(xi) ▷ Augment data (Eq. 7)
13: Train(qθk , xi, x̃i) ▷ Train local model (Eq. 3)
14: end for
15: end for

Step 4: Compile Predictions
16: Y ← collect sort({qθk (X)}) ▷ Collect and sort predictions

Step 5: Base Model Enhancement
17: If t % f == 0 : ▷ Model Communication with interval f (Eq.4)
18: θglobal ←

∑K
k=1 wkθk

19: θk ← θglobal

environments. Specifically, our method perturbs the ampli-
tude components of target samples in the Fourier space,
enabling targeted augmentation with respect to each sam-
ple’s underlying distribution. By manipulating the frequency-
domain characteristics, our approach generates diverse yet
distribution-consistent variations, thereby enriching subdomain
representations and facilitating robust model adaptation

1) Sample Selection Mechanism: We first select the reliable
samples in each local model leveraging a criterion derived
from the weighted entropy framework used in ETA [6] based
on two primary conditions:

Cri = 1 [(H(yt) < H0) ∧ (|cos(yt, ȳt−1)| < ϵ)] . (5)

The entropy H(yt) measures the uncertainty in the current
predictions. The cosine similarity cos(yt, ȳt−1) denotes the
deviation between the current sample’s class probabilities yt

and the aggregated class probabilities ȳt−1. ϵ is the threshold
for cosine similarity, and H0 is the fixed entropy threshold.
This ensures that selected samples exhibit significant devia-
tions from previous predictions in class distribution and lower
prediction uncertainty.

2) Frequency-Based Augmentation: The augmentation pro-
cess involves perturbing the amplitude spectrum. Let A(xi)
represent the amplitude spectrum of a selected sample xi. To
generate a perturbed amplitude spectrum Ã(xi), we apply a
random Gaussian perturbation:

Ã(xi) = (1 + α ·∆) ·A(xi), (6)

where ∆ ∼ N (0, σ2) is a perturbation matrix sampled from
a Gaussian distribution, and α is a scaling factor. Then, the
augmented sample x̃i is reconstructed via the inverse Fourier
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transform F−1 to the perturbed amplitude spectrum, combined
with the original phase spectrum P (xi):

X̃i = F−1
(
Ã(xi), P (xi)

)
. (7)

3) Loss Function: The training objective combines the
entropy loss of the selected samples with a consistency loss
from the augmented samples. The total loss is defined as:

Ltotal =
1

n

n∑
i=1

H(yi) + λ · 1
n

n∑
i=1

Lcon (ŷi, ỹi) , (8)

where the entropy loss H(yi) for the original sample xi is
given by H(yi) = −

∑C
j=1 yi,j logyi,j with yi being the

predicted probability over the C classes, and the consistency
loss Lcon (ŷi, ỹi) = −

∑C
j=1 ŷi,j log ỹi,j is defined as the

cross-entropy between the prediction ỹi of the augmented
sample x̃i and the pseudo-label ŷi from the original sample.

C. Overall Framework
We provide the overall pipeline algorithm of FreDA in

Algorithm 1. During implementation, we leverage a memory
bank strategy [4], [25], [32], [33] that is updated in real time.
This design serves two purposes: 1) to ensure accurate clus-
tering—since an overly small batch could impede the effective
separation of data – and 2) to maintain the number of samples
processed by the local model consistent with the original batch
size, thereby preventing performance degradation due to a
drastic reduction in batch size (e.g., reducing by a factor of
the cluster number).

VI. THEORETICAL INSIGHTS

To facilitate theoretical understanding, we leverage the
expansion-based analysis framework proposed in [34]. We first
revisit the core concepts and then highlight the theoretical
advantages of our method under mixed domain shifts.

A. Expansion Theory
Definition 1 ((a, c)-expansion). A class-conditional distribu-
tion Pi satisfies (a, c)-expansion if ∀S ⊆ X with Pi(S) ≤ a:

Pi(N (S)) ≥ min(cPi(S), 1)

where N (S) refers to the neighborhood of S under data
augmentations.

Definition 2 (Separation). P is (µ, r)-separated if:

Ex∼P

[
max

x′∈Br(x)
1(G(x) ̸= G(x′))

]
≤ µ

where Br(x) is an ℓ2-ball of radius r.

The core theorem from [34] states:

Theorem 1 (Pseudo-label Denoising). Under (a, c)-expansion
and (µ, r)-separation, any classifier G of:

min
G

c+ 1

c− 1
Lpl(G) +

2c

c− 1
RB(G)

achieves error:

Err(G) ≤ 2

c− 1
Err(Gpl) +

2c

c− 1
µ

where Lpl is pseudo-label loss and RB is consistency regu-
larizer.

B. Analysis of Our Method

Our method reduces both terms in Theorem 1 to achieve a
tighter bound through two mechanisms:

1) Frequency-Coherent Partitioning.: Let {Ptk}Kk=1 be the
K sub-domains identified by frequency-based partitioning. For
measurable sets {Sk}Kk=1 where Sk ⊆ Xk (the support of Ptk ),
define:

Err(Gk
pl) ≤ Err(Gpl)−∆k

where ∆k = Ptk (Ec) and Ec = {x ∈ Xk | Gpl(x) ̸= y(x)}.
This contributes to the reduction of the first term in Theorem 1,
which is further supported by experimental results in Figure 3.

2) Augmentation-Induced Expansion: Our frequency aug-
mentation expands neighborhoods:

N̂ (S) = Nbase(S) ∪
{
x′ : inf

x∈S
|A(F(x′))−A(F(x))|2 ≤ ϵ

}
where Nbase(S) is the base augmentation neighborhood. It is
worth noting that, unlike most methods, we do not apply
base augmentation. The term Nbase(S) is retained in the
formulation for theoretical completeness. Our choice of this
representation is intended to highlight the expansion gain
brought by incorporating frequency augmentation.
The expansion gain becomes:

ĉ = cbase + γ,

γ = inf
S:P (S)≤a

P (N̂ (S) \ Nbase(S))

P (S)

Substituting into Theorem 1, the error becomes:

Err(G) ≤ 2

(cbase + γ)− 1

(
Err(Gpl)−

K∑
k=1

∆k

)
︸ ︷︷ ︸

Reduced by both terms

+
2(cbase + γ)

(cbase + γ)− 1
µ︸ ︷︷ ︸

Reduced by O(γ/c2)

Notation Summary
• c: Expansion factor (Def. 1).

Class-wise connectivity metric: Larger c implies stronger
neighborhood propagation of local consistency to global
predictions.

• µ: Inter-class separation probability (Def. 2).
Robustness measure: Probability of different classes
having overlapping neighborhoods under perturbations,
lower µ indicates clearer decision boundaries.

• RB : Consistency regularizer (Thm. 1).
Stability term: Penalizes prediction inconsistency between
original inputs and their augmented variants.

• ∆k: Error reduction in k-th sub-domain.
Specialization gain: Reduced pseudo-label noise in sub-
domain k due to frequency-based partitioning.

• γ: Expansion gain from frequency augmentation.
Neighborhood enhancement: Additional expansion capa-
bility measured as the relative increase of augmented
neighborhoods.
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TABLE II: Classification error rate (↓) on CIFAR-10-C, CIFAR-100-C, and ImageNet-C (IN-C) under Mixed Distribution
Shifts.

Baseline & Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brig. Contr. Elast. Pixel JPEG Avg.

CIFAR-10-C (WRN-28) 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.4 30.3 43.5
TBN 45.5 42.8 59.7 34.2 44.3 29.8 32.0 19.8 21.1 21.5 9.3 27.9 33.1 55.5 30.8 33.8
TENT (ICLR 21’) 73.5 70.1 81.4 31.6 60.3 29.6 28.5 30.8 35.3 25.7 13.6 44.2 32.6 70.2 34.9 44.1
ETA (ICML 22’) 36.2 33.3 52.3 22.9 38.9 22.4 20.5 19.5 19.7 20.4 11.3 35.4 26.6 38.8 25.1 28.2
AdaContrast (CVPR 22’) 36.7 34.3 48.8 18.2 39.1 21.1 17.7 18.6 18.3 16.8 9.0 17.4 27.7 44.8 24.9 26.2
CoTTA (CVPR 22’) 38.7 36.0 56.1 36.0 36.8 32.3 31.0 19.9 17.6 27.2 11.7 52.6 30.5 35.8 25.7 32.5
SAR (ICLR 23’) 45.5 42.7 59.6 34.1 44.3 29.7 31.9 19.8 21.1 21.5 9.3 27.8 33.0 55.4 30.8 33.8
RoTTA (CVPR 23’) 60.0 55.5 70.0 23.8 44.1 20.7 21.3 20.2 22.7 16.0 9.4 22.7 27.0 58.6 29.2 33.4
RDumb (NeurIPS 23’) 34.9 32.3 49.4 23.3 38.2 23.3 20.7 19.9 19.3 20.7 11.2 29.3 26.7 41.5 25.2 27.7
DeYO (ICLR 24’) 45.8 42.3 65.7 21.3 41.8 25.1 19.5 21.1 19.6 19.2 12.3 21.8 28.5 39.3 28.0 30.1
UnMix-TNS (ICLR 24’) 50.0 44.4 44.3 34.4 48.2 32.7 30.0 35.5 35.9 47.5 28.1 38.7 43.9 40.0 43.3 39.8
FreDA (ours) 23.1 22.2 32.2 18.7 41.6 18.8 16.8 17.9 19.9 16.9 9.8 13.2 29.1 35.4 28.6 22.9

CIFAR-100-C (ResNeXt-29) 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
TBN 62.7 60.7 43.1 35.5 50.3 35.7 34.4 39.9 51.5 27.5 45.5 42.3 72.8 46.4 45.8 45.8
TENT (ICLR 21’) 95.6 95.2 89.2 72.8 82.9 74.4 72.3 78.0 79.7 84.7 71.0 88.5 77.8 96.8 78.7 82.5
ETA (ICML 22’) 42.6 40.3 34.1 30.3 42.4 32.0 29.4 35.6 35.8 44.1 30.2 41.8 36.9 38.9 40.9 37.0
AdaContrast (CVPR 22’) 54.5 51.5 37.6 30.7 45.4 32.1 30.3 36.9 36.5 45.3 28.0 42.7 38.2 75.4 41.7 41.8
CoTTA (CVPR 22’) 54.4 52.7 49.8 36.0 45.8 36.7 33.9 38.9 35.8 52.0 30.4 60.9 40.2 38.0 41.1 43.1
SAR (ICLR 23’) 75.8 72.7 41.1 29.2 45.2 31.1 28.9 36.7 37.7 43.9 29.3 41.8 37.1 89.2 42.4 45.5
RoTTA (CVPR 23’) 65.0 62.3 39.3 33.4 50.0 34.2 32.6 36.6 36.5 45.0 26.4 41.6 40.6 89.5 48.5 45.4
RDumb (NeurIPS 23’) 42.3 40.0 34.1 30.5 42.4 31.9 29.5 35.7 35.9 43.6 30.4 41.9 36.9 38.1 40.5 36.9
DeYO (ICLR 24’) 57.2 53.4 38.8 34.7 47.3 37.3 34.1 40.8 40.5 50.6 33.3 45.8 41.5 94.5 45.7 46.4
UnMix-TNS (ICLR 24’) 65.8 64.1 46.4 37.5 51.7 36.0 36.4 38.5 39.4 51.1 29.3 42.8 43.2 67.8 49.4 46.6
FreDA (ours) 34.8 34.7 36.6 29.4 41.2 29.9 28.4 33.8 33.7 41.1 29.8 34.9 36.9 37.1 38.7 34.7

IN-C (ResNet-50) 97.8 97.1 98.2 81.7 89.8 85.2 77.9 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
TBN 92.8 91.1 92.5 87.8 90.2 87.2 82.2 82.2 82.0 79.8 48.0 92.5 83.5 75.6 70.4 82.5
TENT (ICLR 21’) 99.2 98.7 99.0 90.5 95.1 90.5 84.6 86.6 84.0 86.5 46.7 98.1 86.1 77.7 72.9 86.4
ETA (ICML 22’) 90.7 89.2 90.5 77.0 80.6 74.0 68.9 72.4 70.3 64.6 43.9 93.4 69.2 52.3 55.9 72.9
AdaContrast (CVPR 22’) 96.2 95.5 96.2 93.2 96.4 96.3 90.5 92.7 91.9 92.4 50.8 97.0 96.6 89.7 87.1 90.8
CoTTA (CVPR 22’) 89.1 86.6 88.5 80.9 87.2 81.1 75.8 73.3 75.2 70.5 41.6 85.0 78.1 65.6 61.6 76.0
SAR (ICLR 23’) 98.4 97.3 98.0 84.0 87.3 82.6 77.2 77.5 76.1 72.5 43.1 96.0 78.3 61.8 60.4 79.4
RoTTA (CVPR 23’) 89.4 88.6 89.3 83.4 89.1 86.2 80.0 78.9 76.9 74.2 37.4 89.6 79.5 69.0 59.6 78.1
RDumb (NeurIPS 23’) 89.0 87.6 88.6 78.1 82.3 75.2 70.1 73.0 71.0 65.1 43.9 92.6 70.7 53.7 56.3 73.1
DeYO (ICLR 24’) 99.5 99.2 99.5 89.5 95.0 83.9 78.8 75.0 87.8 79.2 47.3 99.2 92.4 59.0 60.4 83.0
UnMix-TNS (ICLR 24’) 91.7 92.8 91.7 92.3 93.4 91.5 84.8 86.3 84.1 85.0 62.0 96.5 88.6 81.7 77.3 86.7
FreDA (ours) 72.4 74.0 71.4 76.5 82.3 72.1 64.1 64.4 64.8 59.1 43.7 79.7 71.0 54.2 58.6 67.2

VII. EXPERIMENTS

A. Datasets and Experimental Setup

1) Datasets: To provide a comprehensive evaluation of
TTA deployment, we test models over multiple datasets under
three different scenarios:

• Common Image Corruptions: We evaluate models on
CIFAR-10-C, CIFAR-100-C, and ImageNet-C [14] with
10, 100 and 1000 classes, respectively. These benchmarks
are designed to assess the model robustness against vari-
ous corruptions. Each dataset consists of 15 distinct cor-
ruptions across five severity levels, resulting in 150,000
at each severity for CIFAR-10-C/100-C, and 750,000 for
ImageNet-C.

• Natural Domain Shifts: We extend evaluation to Domain-
Net126 [35], which presents natural shifts across four
domains (Real, Clipart, Painting, Sketch) encompassing
126 classes as a subset of the larger DomainNet dataset.

• Medical Application: Models are further evaluated on
Camelyon17 [36], comprising over 450,000 histopatho-
logical patches from lymph node sections for binary
classification of normal and tumor tissue, with data orig-
inating from five distinct healthcare centers.

For corruption datasets, the model is pretrained on the clean
dataset and the 15 corruptions are randomly mixed as the
target distribution. We leverage the highest severity = 5 in
all the experiments. In DomainNet126 and Camelyon17, one
subdomain is selected as the source, and the others serve as
mixed target distributions. All reported results are averaged
over runs with fixed seeds (0, 1, and 2).

2) Baselines: We compare FreDA with 10 models, includ-
ing TBN [31], TENT [3], CoTTA [5], ETA [6], SAR [7],
AdaContrast [4], RoTTA [25], RDumb [9], DeYO [10], and
UnMix-TNS [28]. TBN [31] re-estimates batch normaliza-
tion statistics from test data. TENT [3] minimizes predic-
tion entropy to optimize batch normalization. CoTTA [5]
addresses long-term test-time adaptation in changing environ-
ments. ETA [6] and SAR [7] exclude unreliable and redundant
samples during optimization. AdaContrast [4] utilizes con-
trastive learning to refine pseudo-labels and improve feature
learning. RoTTA [25] presents a robust batch normalization
scheme with a memory bank for category-balanced estimation.
RDumb [9] leverages weighted entropy and periodically resets
the model to its pretrained state to prevent collapse. DeYO [10]
quantifies the impact of object-destructive transformations for
sample selection and weighting. UnMix-TNS [28] introduces a
test-time normalization layer for non-i.i.d. environments by de-
composing BN statistics. For fair comparisons, we conduct ex-
periments using the open source online TTA repository [37]1,
which provides codes and configurations of state-of-the-art
TTA methods.

3) Pretrained Models: We utilize models from Robust-
Bench [38], including WildResNet-28 [39] for CIFAR-10-C
and ResNeXt-29 [40] for CIFAR-100-C, both pretrained by
[41]. For ImageNet-C, the pretrained ResNet-50 [42] is ob-
tained from torchvision. For DomainNet126, pretrained
ResNet-50 is sourced from AdaContrast [4], while for Came-
lyon17, we train a DenseNet-121 [43] from scratch to 100

1https://github.com/mariodoebler/test-time-adaptation
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TABLE III: Classification error rate (↓) on DomainNet126 and Camelyon17 under Mixed Distribution Shifts.

DomainNet126

Methods Real Painting Clipart Sketch Avg.

Source 45.2 41.6 49.5 45.3 45.4
TBN 45.5 39.9 45.9 37.5 42.2
TENT (ICLR 21’) 42.2 37.8 44.7 37.5 40.6
ETA (ICML 22’) 41.1 37.3 43.4 36.4 39.5
SAR (ICLR 23’) 43.2 38.5 44.8 37.0 40.9
DeYO (ICLR 24’) 40.9 36.4 43.6 36.9 39.4
FreDA (ours) 40.2 36.1 40.0 33.6 37.5

Camelyon17

C1 C2 C3 C4 C5 Avg.

21.6 43.6 52.5 47.4 47.6 42.5
26.5 38.5 31.7 39.4 32.8 33.8
44.7 50.5 49.9 49.1 48.6 48.6
47.4 52.5 47.9 49.9 39.2 47.4
26.5 38.5 31.7 39.4 32.8 33.8
50.4 50.3 48.8 51.7 50.5 50.4
18.6 24.7 24.8 40.5 30.8 27.9
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Fig. 5: Averaged classification error rate (↓) on CIFAR-10-
C/100-C and ImageNet-C with various batch size under Mixed
Domains.

epochs with other training specifications outlined in the Wilds
benchmark [44].

4) Hyperparameter Configuration: The batch size is set
to 200, 64, 128 and 32 for CIFAR-10/100-C, ImageNet-
C, DomainNet126 and Camelyon17 following the previous
methods. The SGD optimizer is used with learning rates
adjusted to 0.01, 0.0001, 0.001 and 0.00005, respectively. The
learning rate is proportionally decreased in the experiment
studying the effect of batch size. The Kmeans Size is 512,
Clutser Number is 4, Communication Interval is 10 across
all the tasks. The perturbation magnitude α is fixed to 0.1 and
the coefficient λ in loss function is fixed to 0.5. Two threshold
in Eq. 5 is set to the same value for corruption datasets and
DomainNet126 following ETA [6]. While for Camelyon17, the
class diversity related threshold is adjusted to 0.9 empirically.

B. Main Results

1) FreDA improves across diverse distribution shifts: Our
method consistently attains the lowest error rates across all
evaluated datasets (see TABLE V and III). Notably, on the
Camelyon17 dataset, FreDA reduced the error rate to 27.9%,
outperforming the next best method by 5.9%. This significant
improvement is particularly noTABLE where other approaches
falter if compared with no training (TBN), meaning they
struggle to adapt to the complex medical imaging data. By
effectively handling high variability and intricate patterns in
the data, FreDA maintains superior accuracy and adaptability.

2) FreDA remains stable under various batch size: To
simulate deployment with constrained batch sizes, we evaluate
models under both varying batch sizes and mixed distributions.

TABLE IV: Ablation study of FreDA.

DT SS SA C10 C100 IN

44.1 82.5 86.4
✓ 24.8 54.2 81.2

✓ 29.6 37.5 71.0
✓ 39.4 71.7 92.9

✓ ✓ 24.3 36.3 69.4
✓ ✓ 27.7 36.2 65.9

✓ ✓ 24.4 50.2 77.7
✓ ✓ ✓ 22.9 34.7 67.2

In Figure 5, we present the results on CIFAR-10-C, CIFAR-
100-C, and ImageNet-C using batch sizes ranging from 200
(64) down to 1. Unlike other methods that significantly de-
grade as batch size decreases – for example the error rate
of DeYO increases from 27.7% to 89.8% when batch size
drops from 200 to 1 on CIFAR-10-C – FreDA consistently
maintains strong performance. This stability demonstrates
FreDA’s robustness, making it highly suiTABLE for real-world
applications where large batches is not always feasible.

3) FreDA enhances adaptation via synergistic designs:
This section validates our designs by ablating three key mod-
ules – Decentralized Training (DT), Sample Selection (SS),
and Sample Augmentation (SA). The baseline here leverages
only the entropy loss. From TABLE VI, we have the follow-
ing observations: 1) Implementing decentralized training and
sample selection alone results in substantial improvements,
reducing error rates dramatically across all datasets. 2) Sample
augmentation alone has the possibility to increase error rates,
suggesting that although this approach introduces useful vari-
ability, it may introduce unexpected noise under the absence
of proper selection or decentralized training. 3) The combined
approach delivers the best performance across all datasets,
showing the synergistic effect of our different designs.

C. More analysis and Discussion

1) Performance with Transformer Backbone: In addition
to evaluating our model on commonly compared CNN back-
bones, we further assess its performance under transformer-
based architecture, specifically using the ViT-Base backbone.
Here, we report results on the ImageNet-C benchmark us-
ing ViTBase-LN [45] (see TABLE V), where the pretrained
weights are obtained from torchvision. Importantly, all
experimental configurations are kept consistent with those used
in the CNN-based experiments. As shown, our method contin-
ues to deliver strong performance, demonstrating its robustness
and adaptability across different backbone architectures.
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TABLE V: Classification error rate (↓) on ImageNet-C under Mixed Distribution Shifts using ViT-Base backbone.

Baseline & Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brig. Contr. Elast. Pixel JPEG Avg.

IN-C (VitBase-LN) 65.8 67.3 65.3 68.8 74.4 64.3 66.6 56.8 45.2 48.6 29.2 81.8 57.1 60.8 50.2 60.2
TENT (ICLR 21’) 60.6 60.4 59.6 63.6 67.8 57.1 61.2 55.0 48.8 47.4 28.6 66.7 53.9 50.4 44.4 55.0
ETA (ICML 22’) 59.3 57.8 57.9 58.8 62.8 52.5 58.2 51.0 46.4 44.2 28.8 58.3 51.1 46.9 41.9 51.7
AdaContrast (CVPR 22’) 64.8 63.4 63.3 72.8 76.6 73.7 74.6 67.7 48.0 89.6 30.2 93.2 60.8 57.3 46.3 65.5
CoTTA (CVPR 22’) 89.4 92.0 88.9 93.6 92.6 90.6 86.5 94.9 88.2 86.6 75.8 96.5 85.7 93.5 84.6 89.3
SAR (ICLR 23’) 58.9 57.6 57.6 59.4 63.6 53.0 58.5 52.3 47.1 45.4 28.3 61.6 51.4 47.4 42.0 52.3
RoTTA (CVPR 23’) 64.4 65.6 63.7 67.6 71.3 59.8 64.1 52.7 43.5 48.6 27.9 78.5 54.3 60.4 50.1 58.2
RDumb (NeurIPS 23’) 59.7 58.5 58.5 60.0 64.1 54.0 59.0 52.0 46.7 44.5 28.6 61.2 51.9 48.3 42.6 52.6
DeYO (ICLR 24’) 60.0 58.6 58.8 58.8 62.4 61.9 50.9 46.7 51.9 45.2 29.7 55.7 51.6 45.8 42.8 52.1
FreDA (ours) 55.9 53.7 55.0 58.0 57.9 50.9 57.4 45.5 42.9 43.9 29.5 51.7 47.8 41.6 40.7 48.8

TABLE VI: Sensitivity analysis on different datasets.

CLUSTER NUM 2 4 8 16
CIFAR10-C 23.0 22.9 23.2 24.7
CIFAR100-C 34.8 34.7 34.7 35.6
IN-C (ResNet) 68.6 67.2 67.1 70.5
IN-C (ViT) 50.3 48.8 49.9 50.0

KMEANS SIZE 256 512 1024 2048
CIFAR10-C 23.0 22.9 23.0 22.9
CIFAR100-C 34.6 34.7 34.8 34.8
IN-C (ResNet) 69.0 67.2 67.6 67.0
IN-C (ViT) 49.0 48.8 48.7 48.8

COMM INTERVAL 1 10 100 1000
CIFAR10-C 22.6 22.9 22.6 22.0
CIFAR100-C 34.7 34.7 34.9 43.2
IN-C (ResNet) 67.1 67.2 67.2 67.4
IN-C (ViT) 48.4 48.8 48.8 48.7

PERT MAGNITUDE 0.0 0.1 0.2 0.3
CIFAR10-C 24.3 22.9 22.5 22.2
CIFAR100-C 36.3 34.7 34.9 34.9
IN-C (ResNet) 69.3 67.2 67.0 66.9
IN-C (ViT) 49.6 48.8 48.5 48.6

2) Sensitivity Study: We investigate the impact of
the key hyperparameters: CLUSTER_NUM, KMEANS_SIZE,
COMM_INTERVAL, and PERT_MAGNITUDE. From TA-
BLE VI, we have the following observations: 1) The choice of
CLUSTER_NUM influences model performance, especially on
more complex datasets. While performance remains relatively
stable even with a small number of clusters (e.g., two clusters),
increasing the number of clusters beyond four tends to lead
to slight performance degradation, particularly on datasets
like ImageNet-C. This suggests that while more clusters
can improve adaptation capacity, excessively increasing the
number can introduce overfitting and reduce generalization.
Therefore, a moderate number of clusters, around 4, appears
to strike a good balance between adaptation flexibility and
maintaining model robustness. 2) Varying KMEANS_SIZE
from 256 to 2048 results in stable performance across all
datasets, indicating that our method is robust to changes in
cluster sizes. 3) Our approach shows general robustness to
communication frequency (varying COMM_INTERVAL from 1
to 1,000). On simpler datasets such as CIFAR10-C, infrequent
communication (e.g., interval f = 1000) performs best,
likely due to effective independent learning. In contrast, for
complex datasets, more frequent communication (e.g., f = 1)
improves performance, likely by mitigating divergence among
local branches and ensuring model consistency. 4) Adjust-
ing the perturbation magnitude (PERT_MAGNITUDE) has a
noticeable effect, particularly on simpler datasets. Increasing

TABLE VII: Classification error rate (↓) on CIFAR-10-C
(C10), CIFAR-100-C (C100), and ImageNet-C (IN) using
ResNet-50 & ViT-Base backbones under Continual Setting,
averaged over 15 corruptions.

Methods C10 C100 IN(ResNet) IN(ViT)

Source 43.5 46.5 82.0 60.2
TBN 20.4 35.4 68.6 -
TENT (ICLR 21’) 20.0 62.2 62.6 54.5
ETA (ICML 22’) 17.9 32.2 60.2 49.8
AdaContrast (CVPR 22’) 18.5 33.5 65.5 57.0
CoTTA (CVPR 22’) 16.5 32.8 63.1 77.0
SAR (ICLR 23’) 20.4 32.0 61.9 51.7
RoTTA (CVPR 23’) 19.3 34.8 67.3 58.3
RDumb (NeurIPS 23’) 17.8 34.1 90.6 50.2
DeYO (ICLR 24’) 87.0 98.1 90.6 94.3
UnMix-TNS (ICLR 24’) 24.9 32.7 75.4 -
FreDA (ours) 19.5 32.5 60.2 47.9

perturbation improves performance, suggesting that spectral
augmentation contributes to better generalization. However, for
more complex datasets such as CIFAR100-C, higher perturba-
tion levels lead to slight decline in performance, likely due to
noise disrupting the alignment of finer features. A perturbation
magnitude of 0.1 appears to strike an effective balance, offer-
ing the benefits of augmentation without negatively impacting
feature alignment.

3) Performance under continual settings: Although our
method is specifically designed for mixed domain scenarios,
we also evaluated its performance under the conventional
continual test-time adaptation [3], [5] setting to assess its
robustness in different contexts. In this setting, the model
adapts online to a sequence of test domains without explicit
knowledge of domain shifts, with only one distribution shift
occurring at a time and not reappearing. Without adjust-
ing any parameters, our method demonstrated competitive
performance compared to current state-of-the-art approaches.
Notably, while UnMix-TNS effectively addresses non-i.i.d.
issues (dependent sampling at the class level), it is less
effective under i.i.d. conditions. Our results suggest that the
proposed FreDA not only excels in its intended mixed domain
scenarios but also generalizes effectively to standard continual
adaptation tasks, providing a robust solution across various
distributional challenges.

VIII. CONCLUSION AND FUTURE WORK

This paper advances Test-Time Adaptation (TTA) by
tackling the real-world complexities of heterogeneous data
streams. Our decentralized approach precisely manages diverse
data shifts, improving model adaptation in varied settings. By
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integrating Fourier-based augmentation, we expand the range
of confident samples for each distribution shift, further boost-
ing model performance. The experimental results underscore
the efficacy of FreDA, highlighting its potential to influence
the field and guide future research in adapting to dynamic
and diverse data shifts. While FreDA addresses a critical
challenge in handling heterogeneous data streams, providing
a solid pipeline for this issue, there are still avenues for
further enhancement. Our current aggregation approach, which
averages models based on cluster counts, has been effective in
solving the problem at hand. However, exploring alternative
strategies – such as weighting models by the divergence
between clusters – might lead to incremental improvements.
Additionally, refining the sample selection process from a orig-
inal sample-level focus to a more granular patch-level could
extend FreDA’s applicability to tasks such as segmentation,
further enhancing its versatility in real-world scenarios.

APPENDIX

A. Adaptation Scenarios

1) Mixed Domains: : In this scenario, the model pro-
cesses a long sequence of test samples where each sample
xi ∼ pei(x) is independently drawn from a randomly selected
target domain Dei ∈ {Dt1 ,Dt2 , . . . ,DtN } and a randomly
selected class ci among classes {1, 2, . . . , C}. The sequence
is represented as:{

x
De1

, c1
1 , x

De2
, c2

2 , . . . , x
Dek

, ck
k

}
,

where each target domain index ei ∈ {1, 2, . . . , N} and class
number ci ∈ {1, 2, . . . , C} are independently and randomly
selected for each sample xi.

2) Continual Domain Adaptation: : In this setting, the
model adapts online to a sequentially presented series of test
domains, where each domain shift occurs only once and does
not reappear. The sequence progresses through distinct target
domains in a fixed order D1 → D2 → · · · → DN , with
samples from each domain appearing contiguously. The class
labels within each domain are independently and randomly
selected. The sequence is structured as:

{(xD1,c1
1 ), (xD1,c2

2 ), . . . , (x
D1,cl1
l1

)}︸ ︷︷ ︸
Samples from domain D1

→ {(xD2,cl1+1

l1+1 ), . . . , (x
D2,cl1+l2

l1+l2
)}︸ ︷︷ ︸

Samples from domain D2

→ · · · → {(x
DN ,cl1+···+lN−1+1

l1+···+lN−1+1 ), . . . , (xDN ,ck
k )}︸ ︷︷ ︸

Samples from domain DN

where:

• Di denotes the i-th target domain in the fixed sequence,
with i ∈ {1, 2, . . . , N}.

• cm ∈ {1, 2, . . . , C} is the randomly selected class label
for the m-th sample, independent of domain transitions.

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixel JPEG

Fig. 6: Examples from ImageNet-C under common image
corruptions. The images showcase a range of corruption types
(e.g., noise, blur, and weather distortions) at varying severity
levels.
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Fig. 7: Samples from DomainNet126 across four subdomains
(Real, Sketch, Painting, Clipart). These visualizations reflect
the stylistic and perceptual variations inherent in each domain.

B. Dataset Visualization

To further illustrate the characteristics of the datasets used in
our evaluation, we present visualizations of the data distribu-
tion across different corruption types (Fig. 6), natural domain
shifts (Fig. 7), and medical centers (Fig. 2). These figures
highlight the diverse challenges that our models face in each
evaluation scenario, providing insight into the complexity of
the test conditions.

C. Relation to Frequency Domain Learning

Recent advances highlight frequency-based techniques as
powerful tools for domain transfer. In domain generalization,
frequency analysis has revealed critical insights into model
robustness and learning dynamics [46]–[53]. For domain adap-
tation, interpolating image amplitude spectra across styles
has proven effective in reducing domain gaps and preventing
overfitting to low-level statistics [54]–[57]. Motivated by these
advancements, we discover that frequency information inher-
ently captures domain characteristics, making it a valuable
medium for decoupling mixed target domains – an aspect
largely unexplored in prior work. On this basis, we propose
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FreDA, the first framework addressing TTA under mixed
domain shifts in Fourier space, with a decentralized adaptation
and perturbation mechanism.

D. Relation to Multi-Target Domain Adaptation

TTA under mixed distribution shifts shares similarities with
multi-target unsupervised domain adaptation (MT-UDA) [11],
[12], [58], [59], yet diverges critically in complexity: while
MT-UDA assumes static, predefined target domains and lever-
ages labeled source data for explicit domain alignment, TTA
operates with no access to source data and must adapt to
dynamic, unpredicTABLE target streams in an online manner.
This eliminates direct source-target discrepancy computation
and demand robust incremental adaptation rather than offline
multi-domain optimization. These differences highlight the
need for novel methodologies tailored specifically to TTA,
going beyond the solutions developed for MT-UDA.

E. Relation to Decentralized, Federated, Distributed Learning

This work also intersects with decentralized, federated, and
distributed learning due to splitting data batches into disjoint
subsets and applying decentralized model adaptation. First,
while decentralized learning focuses on non-i.i.d. data that is
naturally distributed across multiple nodes [60], our approach
starts with a centralized batch of target samples. By proactively
splitting this data into disjoint subsets, we expose latent non-
i.i.d. characteristics, enabling the effective use of decentralized
learning techniques. Second, federated learning considers data
privacy and model collaborations within decentralized learn-
ing [61]. In our case, as target samples are mixed in a batch,
data privacy is not a concern. However, similar to federated
learning, our approach also involves weight aggregation over
subnetworks to enhance their base models before next batch
adaptation. Third, distributed learning aims to improve training
efficiency on large-scale datasets by partitioning data for
synchronized training [62]. In contrast, our method operates in
a real-time fine-tuning context with limited data at one time,
hence scalability is less of a concern.
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