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Rethinking Spectral Graph Neural Networks with
Spatially Adaptive Filtering

Jingwei Guo, Kaizhu Huang*, Xinping Yi, Zixian Su, and Rui Zhang

Abstract—Whilst spectral Graph Neural Networks (GNNs) are
theoretically well-founded in the spectral domain, their practical
reliance on polynomial approximation implies a profound linkage
to the spatial domain. As previous studies rarely examine spectral
GNNs from the spatial perspective, their spatial-domain inter-
pretability remains elusive, e.g., what information is essentially
encoded by spectral GNNs in the spatial domain? In this paper,
to answer this question, we investigate the theoretical connection
between spectral filtering and spatial aggregation, unveiling an
intrinsic interaction that spectral filtering implicitly leads the
original graph to an adapted new graph, explicitly computed for
spatial aggregation. Both theoretical and empirical investigations
reveal that the adapted new graph not only exhibits non-
locality but also accommodates signed edge weights to reflect
label consistency among nodes. These findings highlight the
interpretable role of spectral GNNs in the spatial domain and
inspire us to rethink graph spectral filters beyond the fixed-
order polynomials, which limit the effective propagation range
and hinder their ability to capture long-range dependencies.
Built upon the theoretical findings, we revisit the state-of-the-
art spectral GNNs and propose a novel Spatially Adaptive
Filtering (SAF) framework, which leverages the adapted new
graph by spectral filtering for an auxiliary non-local aggregation.
Notably, our SAF comprehensively models both node similarity
and dissimilarity from a global perspective, therefore alleviating
persistent deficiencies of GNNs related to long-range dependen-
cies and graph heterophily. Extensive experiments over 13 node
classification benchmarks demonstrate the superiority of our
proposed framework to the state-of-the-art methods.

Index Terms—Graph Neural Networks, Spectral Filtering,
Long-range Dependency, Graph Heterophily

I. INTRODUCTION

Graph Neural Networks (GNNs) have shown remarkable
abilities to uncover the intricate dependencies within graph-
structured data, and achieved tremendous success in graph
machine learning [1]–[6]. Spectral GNNs are a class of GNNs
rooted in spectral graph theory [7], [8], implementing graph
convolutions via spectral filters [9], [10]. Whilst various spec-
tral filtering strategies [11]–[19] have been proposed for spec-
tral GNNs, their practical implementations invariably resort to
approximating graph filters with fixed-order polynomials for
computational efficiency [15], [16]. This truncated approach
essentially relies on the direct extraction of spatial features
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from the local regions of nodes. As such, the spatial domain
of a graph, albeit loosely connected to spectral GNNs in
theory, still plays a crucial role in effectively learning node
representations.

However, there is a notable lack of research examining spec-
tral GNNs from the spatial perspective. Though recent studies
analyze both spectral and spatial GNNs to elucidate their
similarities in model formulations [20]–[22], outcomes [23],
[24], and expressiveness [16], [25]–[27], they neglect the in-
terpretability that could arise mutually from the other domain.
Specifically, while most spectral GNNs have well explained
their learned filters in the spectral domain [13], [15]–[17],
understandings from the spatial viewpoint are merely limited
to fusing multi-scale graph information [28]; this unfortunately
lacks a deeper level of interpretability in the vertex domain.
Therefore, a natural question arises: what information is es-
sentially encoded by spectral GNNs in the spatial domain?

In this work, we attempt to answer this question by ex-
ploring the connection between spectral filtering and spatial
aggregation. The former is the key component in spectral
GNNs, while the latter is closely associated with spatial
GNNs utilizing recursive neighborhood aggregation. In exist-
ing GNN frameworks, these two approaches rarely interact
each other at the risk of domain information trade-offs due
to uncertainty principles [29]–[31]. Recognizing the spatial
significance in spectral filtering, [13] have recently consid-
ered non-negative constraints as part of a generalized graph
optimization problem. Notably, however, spatial aggregation
meanwhile resembles the optimizing trajectory of the same
optimization problem through iterative steps, which may be
easily overlooked. Inspired by such observation, we examine,
for the first time, the theoretical interaction between spectral
filtering and spatial aggregation. This exploration has led us
to uncover an intriguing theoretical interplay, i.e., spectral
filtering implicitly modifies the original graph, transforming it
into a new one that explicitly functions as a computation graph
for spatial aggregation. Delving deeper, we discover that the
adapted new graph enjoys some desirable properties, enabling
a direct link among nodes that originally require multiple hops
to do so, thereby exhibiting nice non-locality. Moreover, we
find that the new graph edges allow signed weights, which
turns out capable of distinguishing between label agreement
and disagreement of the connected nodes.

Overall, these findings underscore the interpretable role
and significance of spectral GNNs in the spatial domain,
inspiring us to rethink graph spectral filters beyond fixed-order
polynomials, which, albeit efficient, limit models’ effective
propagation range and hinder their ability to capture long-



2

range dependencies. Concretely, we propose a novel Spatially
Adaptive Filtering (SAF) framework to fully explore spectral
GNNs in the spatial domain. SAF leverages the adapted new
graph by spectral filtering for auxiliary spatial aggregation and
allows individual nodes to flexibly balance between spectral
and spatial features. By performing non-local aggregation with
signed edge weights, SAF adeptly overcomes the limitations
of truncated polynomials, enabling the model to capture both
node similarity and dissimilarity at a global scale. As a benefit,
it can mitigate persistent deficiencies of GNNs regarding long-
range dependencies and graph heterophily. The contributions
are summarized as follows:

• Our investigation into spectral GNNs in the spatial do-
main reveals that they fundamentally alters the original
graph, introducing non-locality and signed edge weights
to discern node label consistency.

• We propose Spatially Adaptive Filtering (SAF) frame-
work, a paradigm-shifting approach to spectral GNNs
that jointly leverages graph learning in both spatial and
spectral domains, making it a powerful tool for capturing
long-range dependencies and handling graph heterophily.

• Extensive experiments in node classification exhibit no-
table improvements of up to 15.37%, and show that SAF
beats the best-performing spectral GNNs on average.

II. MOTIVATION AND RELATED WORKS

This section outlines the motivation behind our research,
derived from thoughtful consideration of the existing related
works, and elucidates how our work diverges from and con-
tributes to the current body of research.

A. Graph Neural Networks

GNNs can be broadly divided into spatial-based and
spectral-based methods. Spatial GNNs leverage the spatial
connections among nodes to perform message passing, also
known as spatial aggregation [32], [33] (readers are directed
to works [2], [34] for a thorough review). Spectral GNNs
leverage the graph’s spectral domain for convolution or, al-
ternatively, spectral filtering [10], [35]. Prevailing approaches
focus on developing polynomial graph filters, by either learn-
ing polynomial coefficients, such as GPR-GNN [12], Bern-
Net [13], ChebNetII [15], and JacobiConv [16], or optimizing
the polynomial basis for better adaption, as seen in models
like LON-GNN [18] and OptBasisGNN [19]. Diverging from
this trend, ARMA [36] employs rational filter functions while
still approximating them with polynomials. Although these
methods are theoretically grounded in the spectral domain,
their practical reliance on polynomial approximation hints at
a profound linkage to the spatial domain. However, the spatial-
domain interpretation of spectral GNNs is rarely examined. To
this end, we delve into in this paper the intrinsic information
spectral GNNs convey within the spatial context.

B. Unified Viewpoints for GNNs.

Several works have explored the nuances between spatial
and spectral GNNs. Early studies by [20] and [21] examined

their similarities in model formulations. [25] proved their
spatial GNN’s anti-oversmoothing ability via spectral analysis.
[23] and [24] utilized the graph signal denoising problem to in-
tegrate both GNN types, and their expressiveness equivalence
is further explored in works [16], [26]. Recently, [27] have
highlighted the feature space constraints of both spatial and
spectral GNNs, while [22] tend to emphasize their relation-
ship via residual connection. Though these studies effectively
bridge spectral and spatial GNNs, they remain focused on con-
gruencies. Unlike them, our work represents the first endeavor
to delve into the interpretability of spectral GNNs in the spatial
domain, emphasizing the theoretical synergy between spectral
filtering and spatial aggregation. The empirical success of our
method (as compared to unified GNNs in Tables II and III),
stem from this in-depth analysis, further underscoring our
practical contributions to the literature.

C. Long-range Dependencies

While substantial efforts have been directed towards cap-
turing long-range dependencies in spatial GNNs [25], [37]–
[42], the exploration of the same challenge in spectral GNNs
remains under-studied. Specifically, most spectral GNNs ap-
proximate graph filters with fixed-order polynomials, which,
albeit efficient, limits the effective propagation range and
hinder their ability to capture the long-range dependencies.
To fill this gap, we propose SAF framework that emerges as
a valuable consequence of analyzing spectral GNNs in the
spatial domain. Aligned with our objective, Specformer [43]
is introduced to addresses long-range dependencies for spectral
GNNs, using a Transformer based set-to-set spectral filter.
However, it lacks spatial-domain interpretability and intro-
duce more trainable parameters. In contrast, our approach
creates a non-local new graph without learning additional
parameters, meanwhile elucidating the spatial implications of
spectral GNNs. Similarly, a recent approach, FLODE [44],
also produces matrices capable of capturing long-range de-
pendencies by utilizing the fractional graph Laplacian [45].
However, this work mainly generalizes existing concepts from
undirected to directed graphs to mitigate graph oversmoothing.
Our study, conversely, focuses on exploring the fundamental
issues surrounding undirected graphs to delve deeper into the
intrinsic significance of spectral GNNs.

D. Graph Heterophily

Graph heterophily [39], [46], where different labeled nodes
connect, challenges GNNs operating under the homophily
assumption [47]. Although many GNNs have been crafted to
manage heterophilic connections [12], [48]–[55], our method
offers a distinct solution. Specifically, SAF innovatively con-
ducts an auxiliary non-local aggregation using signed edge
weights, emphasizing both intra-class similarity and inter-class
difference on a global scale. One should note that there are two
recent works [56], [57] also employ signed edge weights, in-
troducing GloGNN and LRGNN, respectively. GloGNN aims
to capture global homophily but is limited to K-hop neighbor-
hood information, while LRGNN extends this by using low-
rank properties to approximate the true global relationships
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between node labels. Despite their success, both methods
focus primarily on fitting node label relationships without fully
exploring the fundamental GNN mechanisms, leading to a
heavy reliance on label supervision (Section VI-I). Differently,
our SAF leverages cross-domain insights into GNNs, ensuring
the theoretical soundness of non-local learning, as proven in
Section IV-B. This allows SAF to consistently perform well
under both sparse and dense supervision.

III. NOTATIONS AND PRELIMINARIES

Let G = (V, E) be a graph with node set V and edge set E ,
where the number of nodes is denoted by N . The adjacency
matrix A ∈ RN×N defines the edge weights Ai,j between
nodes vi and vj , and the degree matrix D can be obtained by
summing the rows of A into a diagonal matrix. We denote the
graph Laplacian matrix as L, which is often normalized into
L̂ = I−Â with Â = D− 1

2AD− 1
2 and an identity matrix I. Let

L̂ = UΛUT be the Laplacian eigendecomposition, where U
is eigenvector matrix and Λ = diag(λ1, λ2, · · · , λN ) consists
of eigenvalues within [0, 2]. For node classification, we usually
have a feature matrix X ∈ RN×F with F being raw feature
dimensions, and each node is assigned a one-hot label vector
yi ∈ RC where C ≤ N is class number.

A. Spectral Filtering

Spectral filtering is essential in spectral GNNs. It selec-
tively shrinks or amplifies the Fourier coefficients of node
features [9] for learning tasks and usually take the form as

Z = gψ(L̂)X = Ugψ(Λ)UTX. (1)

Here, gψ : [0, 2] → R defines a graph filter function, which
are often approximated by a K-order polynomial in practice.
Specifically, we have gψ(λ) =

∑K
k=0 ψkPk(λ) =

∑K
k=0 ωkλ

k

where Pk : [0, 2] → R refers to a polynomial basis and both
ψk and ωk denote the polynomial coefficient.

B. Spatial Aggregation

Spatial aggregation is a central component of spatial GNNs,
facilitating the propagation of node information along edges
and its subsequent aggregation within node neighborhood.
To provide a better illustration, let’s consider a popular spa-
tial GNN, APPNP [37]. This model begins with a feature
transformation – Z(0) = f(X), and then perform the spatial
aggregation as:

Z(k) = (1− η)Z(0) + η ˆ̃AZ(k−1), k = 1, 2, · · · ,K, (2)

where ˆ̃A = D̃− 1
2 ÃD̃− 1

2 , Ã = A + I, and η refers to the
update rate.

IV. RETHINKING SPECTRAL GRAPH NEURAL NETWORKS
FROM THE SPATIAL PERSPECTIVE

In this section, we provide both theoretical and empirical
analyses to examine spectral GNNs from the spatial per-
spective and answer the question, i.e., what information is
essentially encoded by spectral GNNs in the spatial domain?

A. Interplay of Spectral and Spatial Domains through the Lens
of Graph Optimization

The graph signal denoising problem [8] was initially lever-
aged in [23], [24] as a means to interpret GNNs with smooth-
ness assumption, which yet does not always hold in certain
real-world graph scenarios such as heterophily [46]. Without
loss of generality, in this work, we consider a more generalized
graph optimization problem1

argmin
Z

L = α∥X− Z∥2F + (1− α) · tr(ZT γθ(L̂)Z) (3)

where Z ∈ RN×d refers to node representations, γθ(L̂)
determines the rate of propagation [58] by operating on the
graph spectrum, i.e., γθ(L̂) = Uγθ(Λ)UT , and α ∈ (0, 1) is
a trade-off coefficient. In case of setting γθ(L̂) = L̂, Eq. (3)
turns into the well-known graph signal denoising problem. To
ensure the convexity of the objective in Eq. (3), a positive
semi-definite constraint is imposed on γθ(L̂), i.e., γθ(λ) ≥ 0
for λ ∈ [0, 2]. Then, one can address this minimization
problem through either closed-form or iterative solutions.

1) Closed-form Solution: The closed-form solution can be
obtained by setting the derivative of the objective function L
to 0, i.e., ∂L

∂Z = 2α(Z − X) + 2(1 − α)γθ(L̂)Z = 0. Let
gψ(λ) = (1 + 1−α

α γθ(λ))
−1, we can observe that the closed-

form solution in Eq. (4) is equivalent to the spectral filtering
in Eq. (1).

Z∗ = (I+
1− α
α

γθ(L̂))
−1X = gψ(L̂)X (4)

As γθ(λ) ≥ 0, this establishes a more stringent constraint
for the graph filter in spectral GNNs, i.e., 0 < gψ(λ) ≤

α
α+(1−α)·0 = 1, which is termed as a non-negative constraint
in this paper.

2) Iterative Solution: Alternatively, we can take an iter-
ative gradient descent method such that Z(k) = Z(k−1) −
b∂L∂Z |Z=Z(k−1) with a step size b = 1

2 , which yields a concise
iterative solution in Eq. (5) with Ânew = I−γθ(L̂). Notably, by
taking Ânew as a new computation graph, this solution closely
mirrors the spatial aggregation in Eq. (2).

Z(k) = αX+ (1− α)ÂnewZ(k−1), k = 1, 2, · · · ,K (5)

3) Theoretical Interaction — the Adapted New Graph:
With the non-negative constraint, it is evident that both spec-
tral filtering and spatial aggregation effectively address the
generalized graph optimization problem in Eq. (3), despite
their distinctive forms and operation domains. Upon closer
examination, we discover a compelling relationship between
the graph filter gψ(λ) in Eq. (4) and the new graph Ânew in
Eq. (5), given gψ(λ) = (1 + 1−α

α γθ(λ))
−1,

Ânew = I− γθ(L̂) = I− α

1− α
(gψ(L̂)

−1 − I) (6)

which unveils an intrinsic inter-play, i.e., spectral filtering
implicitly leads the original graph to an adapted new graph,
explicitly computed for spatial aggregation.

1This problem was first introduced in [13] for theoretically grounded graph
filters. However, in this study, we repurpose it as a bridge between spectral
filtering and spatial aggregation.
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Fig. 1. Distributions of connected nodes in the new graph based on their geodesic/shortest-path distance (as ∆i,j ) in the original graph. Nodes, distant in
the original graph (∆i,j > 1 in x-axis), can be linked in the new graph (Number > 0 in y-axis).
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Fig. 2. Left y-axis: Homophily comparison between original and new graphs, considering only positive edges (blue and yellow bars). Right y-axis: Percentage
of negative edges in the new graph that connect nodes from different classes (green bar).

4) What are the differences between Ânew and gψ(L̂):
Whereas the former as the uncovered new graph elucidates
the inherent spatial node relationships, the latter is a operation
in spectral GNNs that processes graph features within spectral
domain. It is crucial to understand that gψ(L̂) may not result in
a dense matrix, especially with fixed-order polynomial approx-
imation. This is because it captures up to only a K-hop neigh-
borhood, i.e., gψ(L̂) =

∑K
k=0 ψkPk(L̂) =

∑K
k=0 ωkÂ

k, prac-
tically limiting spectral GNNs’ effective propagation range.
In contrast, our newfound graph Ânew intrinsically enjoys
a non-local property, as confirmed in the following section.
Building upon this discovery, we further devise a framework
to transcend domain barriers, overcoming the limitations of
current spectral GNNs due to truncated polynomials (see
details in Section V).

B. In-depth Analysis of the Adapted New Graph

To deepen our understanding of the interpretability produced
by spectral GNNs in the spatial domain, we embark upon a
blend of theoretical and empirical inquiries into the adapted
new graph.

1) Non-locality: Our examination of the adapted new graph
illuminates its non-local nature, particularly evident in the
infinite series expansion of the original graph’s adjacency
matrix. To elucidate, we first introduce an pivotal mathematical
construct, the Neumann series, in the following lemma.

Lemma 1. Let M ∈ RN×N be a matrix with eigenvalues λn,
if |λn| < 1 for all n = 1, 2, ..., N , then (I −M)−1 exists
and can be expanded as an infinite series, i.e., (I−M)−1 =∑∞
t=0 M

t, which is known as Neumann series.

With the established non-negative constraint on graph filters,
specifically 0 < gψ(λ) ≤ 1, it becomes evident that the eigen-
values of I−gψ(L̂) falls into the interval permitting Neumann

series expansion, as shown in lemma 1 [59]. Building on this
observation, we present a non-trivial property of the new graph
in the following proposition.

Proposition 1. Given adjacency matrix Ânew formulated in
Eq. (6), the adapted new graph exhibits non-locality. Specif-
ically, Ânew is expressible as an infinite series expansion of
the original graph’s adjacency matrix Â. Formally, we have
Ânew = I− α

1−α
∑∞
t=1(I−

∑K
k=0 πkÂ

k)t =
∑∞
t=0 ϕtÂ

t where
πk and ϕt refer to the constant coefficients computed from
{ψ0, ψ1, ..., ψK} in distinct ways.

Proof. We begin with the assertion that the eigenvalues of
I − gψ(L̂) are positive and strictly less than 1, which fulfills
the necessary condition for the Neumann series expansion
stated in Lemma 1. As such, we can deduce gψ(L̂)

−1 =
(I − (I − gψ(L̂)))

−1 =
∑∞
t=0(I − gψ(L̂))

t. Owning to
the prevalent polynomial approximation, we are eligible to
express gψ(L̂) w.r.t. adjacency matrix Â, i.e., gψ(L̂) =

gψ(I − Â) =
∑K
k=0 πkÂ

k where πk refers to the new
coefficients made of up {ψm}Km=0. Substituting this polyno-
mial representation into our Neumann expansion, we obtain
gψ(L̂)

−1 =
∑∞
n=0(I −

∑K
k=0 πkÂ

k)t. Now, revisiting Ânew

in Eq. (6), we have Ânew = I − α
1−α (gψ(L̂)

−1 − I) =

I − α
1−α

∑∞
t=1(I −

∑K
k=0 πkÂ

k)t =
∑∞
t=0 ϕtÂ

t where ϕt
is a constant coefficient made up of {πm}Km=0.

This proposition implies that the new graph engenders imme-
diate links between nodes that originally necessitate multiple
hops for connection. To further underpin this theoretical claim,
we analyze the general connection status on the new graph by
BernNet [13], a spectral GNN adhering to the non-negative
constraint. From Fig. 1, it is apparent that nodes originally
separated by multiple hops achieve direct connections in the
new graph.
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2) Signed Edge Weights — Discerning Label Consistency:
Upon further scrutinizing the adapted new graph, we make a
notable discovery that it readily accommodates both positive
and negative edge weights. A more granular analysis in
Fig. 2 reveals that a considerable portion of positive edge
weights are assigned to the same-class node pairs, enhancing
graph homophily (exemplified by edge homophily ratio [46]).
Conversely, edges parameterized with negative weights tend to
bridge nodes with different labels. These findings demonstrate
the newfound graph’s adeptness in discerning label consistency
among nodes. To theoretically explain this phenomenon, we
further present the proposition below:

Proposition 2. Let Z∗ be the node representations optimized
by Eq. (3). For Z∗ to be effective in label prediction, it is
a necessary condition that Ânew accommodates both positive
and negative edge weights s.t. for any node pairs vi, vj ∈ V ,
Ânew
i,j > 0 if yi = yj and Ânew

i,j < 0 if yi ̸= yj .

Proof. Let us commence the proof by contradiction. Let C
denote the condition described in proposition 2. Assume, for
the sake of contradiction, that C is not requisite for the optimal
node representations Z∗ to be predictive of node labels. Under
this assumption, there are node pairs vi, vj ∈ V such that: (1) if
yi = yj , Ânew

i,j < 0; (2) if yi ̸= yj , Ânew
i,j > 0. Without loss of

generality, given the non-locality as proved in proposition 1,
we exclude cases where Ânew

i,j = 0 from our consideration.
Now, consider the second objective term tr(ZT γθ(L̂)Z) in
Eq. (3). Using the relationship γθ(L̂) = I − Ânew, we can
expand this term into

∑
vi,vj∈V Â

new
i,j ∥Zi − Zj∥22. Under (1),

for same-class nodes vi, vj with Ânew
i,j < 0, minimizing the

objective term pulls Zi and Zj apart in the latent space. This
behavior violates the canonical understanding that nodes from
the same class should exhibit similar representations. Under
(2), for different-class nodes vi, vj with Ânew

i,j > 0, the opti-
mization encourages Zi and Zj to be more similar. This is in
direct opposition to the basic classification principle that nodes
from different classes should have distinct representations.
Given these contradictions stemming from the mathematical
implications in optimization, we must reject assumptions (1)
and (2), affirming the necessary condition C for accurate label
prediction by Z∗.

Proposition 2 provides a theoretical foundation of our empiri-
cal findings on the new graph. The essence lies in the objective
in Eq. (3), particularly the trace term tr(ZT γθ(L̂)Z). For clar-
ity, let us reinterpret this trace term as tr(Z̄T (Dnew−Anew)Z̄),
where Dnew denotes the related degree matrix and Z̄ is derived
from rescaling Z. Clearly, this term evaluates label smoothness
among adjacent nodes in the new graph, which, given its non-
local nature, includes both intra-class (=) and inter-class ( ̸=)
node connections such that Anew = Anew

= + Anew
̸= . Drawing

from proposition 2, we can further dissect the original trace
term, splitting it into tr(Z̄T (Dnew

= −Anew
= )Z̄)−tr(Z̄T |(Dnew

̸= −
Anew

̸= )|Z̄) where the | · | operation denotes absolute values.
As such, it becomes evident that minimizing this trace term
not only enhances the representational proximity for same-
class node pairs but also strengthens the distinctiveness for
different-class nodes pairs. Such nuanced behaviors, inherent
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Fig. 3. Illustration of SAF framework where varying node colors represent
different node labels. SAF leverages the adapted new graph by spectral
filtering for auxiliary non-local aggregation in the spatial domain and allows
individual nodes to flexibly balance between spectral and spatial features.

to the optimization in Eq. (3), are necessary for GNN models
to achieve accurate label predictions.

3) Summarization: Our investigation into spectral GNNs in
the spatial domain reveals that they fundamentally alters the
original graph, imbuing it with non-locality and signed edge
weights that capture label relationships among nodes. These
findings highlight the interpretable role of spectral GNNs in
the spatial domain and prompt us to rethink current models
beyond the truncated polynomial filters.

V. SPATIALLY ADAPTIVE FILTERING FRAMEWORK

Building on our discoveries, we re-evaluate the state-of-the-
art spectral GNNs and put forth a paradigm-shifting frame-
work, Spatially Adaptive Filtering (SAF), for joint exploita-
tion of graph-structured data across both spectral and spatial
domains. SAF leverages the adapted new graph by spectral
filtering for an auxiliary non-local aggregation, addressing en-
during challenges in GNNs related to long-range dependencies
and graph heterophily. See the overall pipeline in Fig. 3.

1) Non-negative Spectral Filtering: The proposed SAF
requires explicit computation of the newfound graph, as out-
lined in Eq. (6). This further necessitates the graph filter
gψ : [0, 2] → R to satisfy the non-negative constraint from
Eq. (3): 0 ≤ gψ(λ) ≤ 1. However, not all extant graph
filters fulfill this prerequisite. For instance, the filter use by
GCN [10], gψ(λ) = 1 − λ, takes negative values when
λ > 1. In this research, we approximate the graph filter using
Bernstein polynomials [60], which are known for their non-
negative traits [61] and are essential in a preeminent spectral
GNN, BernNet [13]. For gψ(λ) ≤ 1 part, we rescale Bernstein
polynomials with the following proposition.

Proposition 3. Let Bk,K(x) denote the Bernstein polyno-
mial basis of index k and order K, which is defined as
Bk,K(x) =

(
K
k

)
(1 − x)K−kxk for x ∈ [0, 1]. Let ψk denote

the k-th coefficient of a polynomial p(x) of order K, where
p(x) =

∑K
k=0 ψkBk,K(x) with ψk ≥ 0 for all k. Then for all

x ∈ [0, 1], we have gψ(x) ≤ max{ψk}Kk=0.



6

Proof. We denote p(x) =
∑K
k=0 ψk

(
K
k

)
(1 − x)K−kxk as a

Bernstein polynomial with ψk ≥ 0 for all k and ψmax =
max{ψk}Kk=0. Given x ∈ [0, 1], we can derive the following
inequality as

p(x) =

K∑
k=0

ψk

(
K

k

)
(1− x)K−kxk

≤ ψmax

K∑
k=0

(
K

k

)
(1− x)K−kxk

= ψmax(1− x+ x)K = ψmax.

Therefore, we have p(x) ≤ max{ψk}Kk=0 for all x ∈ [0, 1].

Proposition 3 suggests that the Bernstein polynomial func-
tion attains its maximum value in ψmax = max{ψk}Kk=0.
Therefore, gψ(λ) can be rescaled within [0, 1] by ĝψ(λ) =
1
ψmax

∑K
k=0 ψkBk,K(λ2 ), which enables us to formulate the

spectral filtering in SAF as Zf = ĝψ(L̂)fφ(X) =
1
ψmax

∑K
k=0 ψk

1
2K

(
K
k

)
(2I − L̂)K−kL̂kfφ(X) where fφ(·), a

two-layer MLP, maps X from F to C dimensions using 64
hidden units, and {ψk}Kk=1 are non-negative learnable param-
eters. Note that SAF also permits alternative implementations
such as using Chebyshev polynomials [9], [62] for graph filter
learning, enhancing models like ChebNetII [15] (see details in
Section VI-H).

2) Non-local Spatial Aggregation: Once acquiring a suit-
able spectral filter ĝψ(λ), we compute the adapted new graph
as Ânew = I− τ(Umgψ(Λm)−1Um

T − I) by Eq. (6) where
τ = α

1−α is a scaling parameter and a partial eigendecomposi-
tion [63] can be employed to produce a low-rank, robust struc-
ture for Ânew using only m extremal eigenvalues. Equipped
with this newfound graph, we proceed to perform non-local
aggregation: Z(l) = (1−η)Z(0)+ηÂnewZ(l−1), where η refers
to the update rate and Z(0) = fφ(X) and l = 1, 2, · · · , L
denote layer number. The iteratively aggregated results are
denoted as Za. Recognizing the potential noise from the non-
local nature of Ânew, we apply a sparsification technique,
leveraging a positive threshold ϵ, and retain only essential
elements outside the [−ϵ, ϵ] interval. For clarity, this refined
model is referred to as SAF-ϵ.

3) Node-wise Prediction Amalgamation: To leverage infor-
mation from different graph domains, we employ an atten-
tion mechanism, allowing nodes to determine the importance
of each space. This mechanism produces pairwise weights
for a nuanced amalgamation during prediction. Specifically,
the weight pair is computed as κf = Sigmoid(Pf (Zf )),
κa = Sigmoid(Pa(Za)) where κf ,κa ∈ RN contain the
weights for each node, and Pf (·) and Pa(·) are two differ-
ent mappings from RC to R. For simplicity, we implement
them using two one-layer MLPs. Given domain predictions
Yf ,Ya ∈ RC , the final model prediction is attained as
Y = diag(κf ) ·Yf + diag(κa) ·Ya where a normalization
[κf ,κa] ← [κf ,κa]

max{∥{κf ,κa}∥1,δ} is performed beforehand to
maintain κf + κa = 1 with small value δ preventing zero
division. Similar schemes can be founded in works [64]–[66].

TABLE I
STATISTICS OF REAL-WORLD DATASETS. F AND C DENOTES THE

NUMBER OF FEATURES AND CLASSES. ∆ REPRESENTS GRAPH DIAMETER
REFERRING TO THE LONGEST GEODESIC DISTANCE BETWEEN NODES ON

THE GRAPH; FOR PENN94, DUE TO MULTIPLE SUBGRAPHS, WE REPORT ∆
OF THE LARGEST CONNECTED COMPONENT. WE ASSESS GRAPH

HOMOPHILY USING THREE METRICS - EDGE HOMOPHILY [46] H, CLASS
HOMOPHILY [67] HCLASS , AND ADJUSTED HOMOPHILY [68] HADJUSTED -
WHICH RANGES FROM 0 (HIGH HETEROPHILY) TO 1 (HIGH HOMOPHILY).

Dataset |V| |E| F C ∆ H Hclass Hadjusted

Chameleon 2,227 36,101 2,325 5 11 0.23 0.06 0.03
Squirrel 5,201 217,073 2,089 5 10 0.22 0.03 0.01
Texas 183 309 1,703 5 8 0.11 0.00 -0.23
Cornell 183 295 1,703 5 8 0.30 0.05 -0.08
Actor 7,600 33,544 931 5 12 0.22 0.01 0.00
Cora 2,708 5,429 1,433 7 19 0.81 0.77 0.77
Citeseer 3,327 4,732 3,703 6 28 0.74 0.63 0.67
Pubmed 19,717 44,338 500 3 18 0.80 0.66 0.69

Minesweeper 10,000 39,402 7 2 99 0.68 0.01 0.01
Tolokers 11,758 519,000 10 2 11 0.59 0.18 0.09
Amazon-ratings 24,492 93,050 300 5 46 0.38 0.13 0.14
Roman-empire 22,662 32,927 300 18 6,824 0.05 0.02 -0.05
Penn94 41,554 1,362,229 5 2 8 0.47 0.05 0.02

4) Complexity Analysis: SAF augments spectral GNNs
with non-local aggregation and node-wise amalgamation. The
first part entails creating a new graph and information prop-
agation. In SAF-ϵ, these two steps are separated, culminat-
ing in O(N3 + N2 + nnz(Ânew)d) complexity, where nnz
denotes non-zero element count. Conversely, SAF, viewing
non-local aggregation holistically, can reduce complexity to
O(2dN2 + dN) when d ≪ N . For node-wise amalgama-
tion, its parallelizable nature ensures computational efficiency.
Our method also requires eigendecomposition precomputation,
which, though naively complex at O(N3), can be reduced to
O(m2+nnz(L̂)m) using Lanczos method [63] with m≪ N
iterative steps. The results are also reusable for both training
and inference. We present empirical studies on both time and
space overheads in Section VI-J.

5) Practical Implications of Eigendecomposition: Eigen-
decomposition breaks down a matrix into its eigenvalues
and eigenvectors, offering insights into matrix properties,
especially for the graph Laplacian. Despite computational
demands, this technique has attracted surging interest in the
graph learning community due to its theoretical richness, and
it can be practically expedited for larger graphs using Lanc-
zos [63] and Sparse Generalized Eigenvalue [69] algorithms.
Recent advancements also underscore its value in various
applications such as graph positional encoding [70]–[72],
spectral graph convolution [28], graph domain adaptation [73],
graph robustness [74], graph expressivity [27], [51], [75], [76],
and graph transformers [43], [77]–[79]. In line with these
developments, our SAF also utilizes eigendecomposition to
explicitly create a new graph, enabling efficient non-local ag-
gregation with signed weights to tackle long-range dependency
and graph heterophily.

VI. EXPERIMENTS

A. Datasets and Experimental Setup

1) Datasets: We conduct experiments on 13 real-world
datasets with detailed statistics provided in Table I. In certain
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TABLE II
SEMI-SUPERVISED NODE CLASSIFICATION ACCURACY (%) ± 95% CONFIDENCE INTERVAL.

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

MLP 26.36±2.85 21.42±1.50 32.42±9.91 36.53±7.92 29.75±0.95 57.17±1.34 56.75±1.55 70.52±2.01
GCN 38.15±3.77 31.18±0.93 34.68±9.07 32.36±8.55 22.74±2.37 79.19±1.37 69.71±1.32 78.81±0.84
APPNP 32.73±2.31 24.50±0.89 34.79±10.11 34.85±9.71 29.74±1.04 82.39±0.68 69.79±0.92 79.97±1.58

ARMA 37.42±1.72 24.15±0.93 39.65±8.09 28.90±10.07 27.02±2.31 79.14±1.07 69.35±1.44 78.31±1.33
GPR-GNN 33.03±1.92 24.36±1.52 33.98±11.90 38.95±12.36 28.58±1.01 82.37±0.91 69.22±1.27 79.28±2.25
BernNet 27.32±4.04 22.37±0.98 43.01±7.45 39.42±9.59 29.87±0.78 82.17±0.86 69.44±0.97 79.48±1.47
ChebNetII 43.42±3.54 33.96±1.22 46.58±7.68 42.19±11.61 30.18±0.81 82.42±0.64 69.89±1.21 79.51±1.03
JacobiConv 36.67±1.63 29.38±0.71 48.50±5.90 43.01±11.92 31.69±0.71 82.93±0.55 70.25±1.02 79.53±1.28
Specformer 36.05±3.47 29.64±0.88 50.00±8.33 43.76±5.84 31.45±0.68 81.44±0.63 66.11±0.98 78.05±1.03
LON-GNN 35.17±1.85 30.25±1.04 45.38±7.92 35.32±8.09 31.51±1.23 81.93±0.74 70.41±1.10 79.57±1.08
OptBasisGNN 35.56±2.86 31.25±1.06 37.11±5.09 32.31±7.11 31.73±0.50 78.69±0.86 63.46±1.30 77.38±0.98
FLODE 40.20±1.02 31.99±1.05 50.29±4.74 42.89±7.69 32.18±1.10 79.90±1.07 69.89±2.03 77.78±1.47

GNN-LF 26.49±2.00 22.01±1.04 39.02±6.24 36.65±9.60 28.28±0.71 81.96±0.92 69.80±1.36 79.50±1.28
GNN-HF 35.57±2.26 22.36±1.26 44.80±5.67 38.79±11.62 29.15±0.78 81.15±0.78 69.68±0.73 79.10±1.19
ADA-UGNN 39.39±2.02 25.65±0.49 47.86±6.65 42.89±8.09 30.78±1.00 82.52±1.04 70.18±1.40 79.78±1.32
FE-GNN 38.23±1.66 31.67±1.60 47.40±5.90 41.21±8.96 26.20±0.76 77.00±0.74 61.24±1.26 75.63±1.33

SAF 41.82±1.74 31.77±0.69 58.04±3.76 52.49±8.56 33.50±0.55 83.57±0.66 71.07±1.08 79.51±1.12
SAF-ϵ 41.88±2.04 32.05±0.40 58.38±3.47 53.41±5.55 33.84±0.58 83.79±0.71 71.30±0.93 80.16±1.25
Improv.3 14.56% 9.68% 15.37% 13.99% 3.97% 1.62% 1.86% 0.68%

compact sections of this paper, we use four-letter abbreviations
for dataset names.

• Chameleon and Squirrel are Wikipedia networks collected
by [80] where nodes are web pages connected by mutual
links. We utilize the labels from [39], dividing nodes into
five classes based on their average monthly traffic.

• Texas and Cornell are webpage datasets from WebKB
project, containing nodes from five classes (student,
project, course, staff, and faculty) and connected by hy-
perlinks. This study uses the preprocessed version by [39].

• Actor is an actor co-occurrence network induced from
the film-director-actor-writer network [81] by [39]. In this
network, nodes are actors divided into five classes, and
edges represent actor co-occurrence on Wikipedia pages.

• Cora, Citeseer, and Pubmed are citation network bench-
marks [82], [83] with nodes as scientific papers and edges
as undirected citations. Each node is assigned with a class
label by research topic and bag-of-word features.

• Minesweeper, Tolokers, Amazon-ratings, and Roman-
empire are recently proposed benchmarks by [84] for
specifically evaluating GNN models under heterophily.

• Penn94 is a large-scale friendship network [85] from the
Facebook 100 networks, where nodes denote students
labeled by reported genders and posses features such as
major, second major/minor, dorm/house, year, and high
school. This work uses the version preprocessed by [67].

2) Baselines: We compare SAF with 21 models: (1) MLP;
(2) Basic GNNs: GCN [10] and APPNP [37]; (3) Spec-
tral GNNs: ARMA [36], GPR-GNN [12], BernNet [13],
ChebNetII [15], JacobiConv [16], Specformer [43], LON-
GNN [18], OptBasisGNN [19] and FLODE [44]; (4) Spa-
tial GNNs: GCNII [25], PDE-GCN [38], NodeFormer [41],
GloGNN++ [56] and LRGNN [86]; (5) Unified GNNs: GNN-
LF [24], GNN-HF [24], ADA-UGNN [23] and FE-GNN [27].

3) Implementation Details: To follow [13], [15], [16], we
fix K = 10. For each dataset, we perform a grid search
to tune the hyper-parameters of all models. With the best
hyper-parameters, we train models with Adam optimizer [87]
in 1,000 epochs using early-stopping strategy and a patience
of 200 epochs, and report the mean classification accuracies
with a 95% confidence interval on 10 random data splits.
As [15] have made a thorough evaluation and share the same
experimental protocol with us, we leverage their results for
models: MLP, GCN, APPNP, ARMA, GPR-GNN, BernNet,
ChebNetII, GCNII and PDE-GCN on datasets – Chameleon,
Squirrel, Texas, Cornell, Actor, Cora, Citeseer, and Pubmed.
For JacobiConv, LON-GNN, and OptBasisGNN, we also re-
port the results from their papers [16], [18], [19]. Our codes
will be made available if the paper could be accepted.

4) Hyper-parameters Setting: We perform a grid search
on the hyper-parameters of all models for each dataset using
Optuna [88] To accommodate extensive experiments across
diverse datasets in both semi- and full-supervised setting, we
define a broad searching space as: learning rate lr ∼ {1e-3,
5e-3, 1e-2, 5e-2, 0.1}, weight decay L2 ∼ {0.0, 1e-6, 5e-6,
1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}, dropout ∼ {0.0, 0.1,
..., 0.8} with step 0.1, non-local aggregation step L ∼ {1,2,
...,10} with step 1, scaling parameter τ ∼ {0.1, 0.2, ..., 1.0}
with step 0.1, update rate η ∼ {0.1, 0.2, ..., 1.0} with step
0.1, and threshold ϵ ∼ {0.0, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3,
1e-2}. For other parameters specific to different base models,
we strictly follow their instructions in the original papers.

B. Semi-supervised Node Classification.

In this task, we follow the experimental protocol established
by [15] and compare our models with MLP, two basic GNNs,
eight popular polynomial spectral GNNs, and five unified
GNNs. For data splitting on homophilic graphs (Cora, Citeseer,
and Pubmed), we apply the standard division [89] with 20
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TABLE III
FULL-SUPERVISED NODE CLASSIFICATION ACCURACY (%) ± 95% CONFIDENCE INTERVAL.

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

MLP 46.59±1.84 31.01±1.18 86.81±2.24 84.15±3.05 40.18±0.55 76.89±0.97 76.52±0.89 86.14±0.25
GCN 60.81±2.95 45.87±0.88 76.97±3.97 65.78±4.16 33.26±1.15 87.18±1.12 79.85±0.78 86.79±0.31
APPNP 52.15±1.79 35.71±0.78 90.64±1.70 91.52±1.81 39.76±0.49 88.16±0.74 80.47±0.73 88.13±0.33

ARMA 60.21±1.00 36.27±0.62 83.97±3.77 85.62±2.13 37.67±0.54 87.13±0.80 80.04±0.55 86.93±0.24
GPR-GNN 67.49±1.38 50.43±1.89 92.91±1.32 91.57±1.96 39.91±0.62 88.54±0.67 80.13±0.84 88.46±0.31
BernNet 68.53±1.68 51.39±0.92 92.62±1.37 92.13±1.64 41.71±1.12 88.51±0.92 80.08±0.75 88.51±0.39
ChebNetII 71.37±1.01 57.72±0.59 93.28±1.47 92.30±1.48 41.75±1.07 88.71±0.93 80.53±0.79 88.93±0.29
JacobiConv 74.20±1.03 57.38±1.25 93.44±2.13 92.95±2.46 41.17±0.64 88.98±0.46 80.78±0.79 89.62±0.41
Specformer 75.06±1.10 65.05±0.96 90.33±3.12 90.00±2.79 42.55±0.67 88.85±0.46 80.68±0.90 91.25±0.31
LON-GNN 73.00±2.20 60.61±1.69 87.54±3.45 84.47±3.45 39.10±1.59 89.44±1.12 81.41±1.15 90.98±0.64
OptBasisGNN 74.26±0.74 63.62±0.76 91.15±1.97 89.84±2.46 42.39±0.52 87.96±0.71 80.58±0.82 90.30±0.19
FLODE 74.38±0.92 63.09±1.04 89.34±1.32 89.02±2.95 42.75±1.10 88.28±1.02 80.66±1.16 90.59±0.55

GCNII 63.44±0.85 41.96±1.02 80.46±5.91 84.26±2.13 36.89±0.95 88.46±0.82 79.97±0.65 89.94±0.31
PDE-GCN 66.01±1.56 48.73±1.06 93.24±2.03 89.73±1.35 39.76±0.74 88.62±1.03 79.98±0.97 89.92±0.38
NodeFormer 53.02±1.58 34.25±1.96 87.71±2.13 90.00±3.45 41.74±0.61 86.93±1.22 79.58±0.85 91.27±0.39
GloGNN++ 72.36±0.85 60.60±1.04 91.48±1.48 89.84±3.62 41.87±1.02 87.21±0.59 79.89±0.61 86.89±0.33
LRGNN 75.01±0.64 63.32±1.27 91.80±2.46 90.33±1.15 41.16±0.91 88.77±0.94 79.85±0.83 90.73±0.47

GNN-LF 53.74±1.29 36.15±0.86 76.07±2.62 78.36±2.46 38.39±0.81 88.51±0.89 79.84±0.56 89.86±0.23
GNN-HF 55.97±1.05 35.29±0.72 81.15±2.62 85.41±3.12 38.96±0.77 88.28±0.64 80.04±0.93 90.35±0.30
ADA-UGNN 61.09±1.51 42.02±1.26 84.92±3.12 83.61±3.44 41.10±0.62 88.74±0.85 79.81±1.11 90.61±0.44
FE-GNN 73.00±1.31 63.28±0.81 88.03±1.80 86.07±3.12 41.74±0.67 89.21±0.71 80.26±1.06 90.80±0.30

SAF 75.30±0.96 63.63±0.81 94.10±1.48 92.95±1.97 42.93±0.79 89.80±0.69 80.61±0.81 91.49±0.29
SAF-ϵ 74.84±0.99 64.00±0.83 94.75±1.64 93.28±1.80 42.98±0.61 89.87±0.51 81.45±0.59 91.52±0.30
Improv.3 6.77% 12.61% 2.13% 1.15% 1.27% 1.36% 1.37% 3.01%

nodes per class for training, 500 nodes for validation, and
1,000 nodes for testing. On the other five heterophilic graphs,
we leverage the sparse splitting [12] with 2.5%/2.5%/95%
samples respectively for training/validation/testing. The results
are reported in Table II, where the best results are bold and
the underlined letters denote the second highest accuracy. We
first observe that both SAF and SAF-ϵ substantially boosts its
base model, BernNet, with gains reaching a notable 15.37%.
This impressive enhancement is credited to their capacity to
effectively exploit the task-beneficial information, which is
implicitly encoded by spectral filtering in the spatial domain.
This ability is particularly advantageous in contexts with
limited supervision, where it allows effective leveraging of
extra prior knowledge during training. Generally, our models
outperform competitors on all datasets except for Chameleon
and Squirrel, where SAF maintains a second-place rank with
considerable improvements on BernNet by 14.56% and 9.68%.
In these cases, ChebNetII initially surpasses our model, yet,
with more training samples, our SAF manages to beats it
by margins of 3.93% and 6.28% (see Table III). Moreover,
SAF-ϵ averagely delivers better results than SAF by using
thresholding sparsity to reduce non-local noise. However,
this enhancement also incurs higher computational costs, as
illustrated in both Section V-4 and Section VI-J.

C. Full-supervised Node Classification.

To bolster our evaluation, we expand the previously com-
pared baselines to include five cutting-edge spatial GNN
models: GCNII & PDE-GCN capturing long-range depen-
dency, and NodeFormer, GloGNN++ & LRGNN, which go
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Fig. 4. Attention changing trends w.r.t. training epochs.

further by not only capturing long-range dependencies but
also effectively addressing graph heterophily. For all datasets,
we randomly divide them into 60%/20%/20% for train-
ing/validation/testing by following [13], [15]. Table III summa-
rizes the mean classification accuracies. Our methods demon-
strate superior performance across most datasets, with an
exception on Squirrel where they achieve comparable results to
Specformer. This notable performance is primarily attributed
to our SAF’s effective non-local aggregation, utilizing signed
edge weights to model global label relationships. This enables
our methods to outperform GNNs that are specifically tailored
for long-range dependency and/or graph heterophily.

3Improv. indicates the relative improvement of our SAF over its base
model, BernNet [13]. For alternative implementation using ChebNetII [15]
as backbone, please refer to Section VI-H.
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Fig. 6. Sensitivity analysis of hyper-parameters: τ , η, ϵ, and L from top to
bottom rows.

D. Analysis of Attention Trends

We analyze the changing trends of the pair-wise attention
weights during training SAF on Squirrel and Cora datasets.
From Fig. 4(b-c), the average weights for filtering and aggre-
gation start similarly but diverge throughout training, showing
different trends in heterophilic and homophilic graphs. On the
heterophilic graph Squirrel, both weights converge to similar
values, demonstrating their mutual importance in modeling
complex connectivity. Conversely, κf becomes dominant on
the homophilic graph Cora due to the sufficiency of node prox-
imity information for label prediction, thereby diminishing the
relevance of κa and non-local aggregation.

E. Ablation Study

This section aims to validate our designs by comparing
SAF with its three ablated variants – SAF w/o Atte., SAF
w/o Spec., and SAF w/o Spat. – in full-supervised node
classification. Specifically, Atte., Spec., and Spat. respec-
tively refers to: attention mechanism in “Node-wise Prediction
Amalgamation”, “Non-negative Spectral Filtering”, and “Non-
local Spatial Aggregation”. For SAF w/o Atte., we remove
the attention mechanism and equally blend predictions from
different domains. SAF w/o Spec. abandons the spectral
filtering phase, practically setting κf = 0,κa = 1. As
the SAF w/o Spat. configuration is equivalent to BernNet

TABLE IV
EVALUATIONS ON NEW HETEROPHILIC GRAPH DATASETS.

Method Mine. Tolo. Amaz. Roma. Penn94

MLP 50.61±0.87 74.58±0.69 45.50±0.38 66.11±0.33 74.58±0.37
GCN 72.25±0.60 76.56±0.85 48.06±0.39 53.49±0.33 82.47±0.27
APPNP 68.48±1.20 74.13±0.62 48.12±0.37 72.99±0.46 75.29±0.27
GPR-GNN 89.76±0.53 75.82±0.50 49.06±0.25 73.19±0.24 81.38±0.16
ChebNetII 83.62±1.51 78.95±0.49 49.76±0.36 74.52±0.54 83.12±0.22
JacobiConv 89.88±0.33 77.24±0.39 43.89±0.28 74.30±0.50 83.35±0.11
NodeFormer 89.89±0.46 80.31±0.75 43.67±1.54 73.59±0.60 69.66±0.83
GloGNN++ 72.59±1.54 79.01±0.84 50.03±0.29 66.10±0.26 73.15±0.59
FE-GNN 84.68±0.36 79.31±0.59 49.46±0.29 74.50±0.30 82.30±0.54

BernNet 77.75±0.61 75.35±0.63 49.84±0.52 74.56±0.74 82.47±0.21
SAF 90.54±0.30 79.38±0.58 50.49±0.28 74.87±0.22 83.86±0.26
Improv. 12.79% 4.03% 0.65% 0.31% 1.39%

model, the corresponding results are posted directly. From
Fig. 5, we can draw several insights: 1) The impact of Atte.
module on our SAF varies by datasets, e.g., on Chameleon
and Squirrel, showing a slight performance reduction upon
its removal. This observation aligns with our observation that
their optimal attention values are close to an even split, as
suggested in Figures 4(a). Conversely, Cora dataset exhibits
a notable drop, due to its optimal attention weights being far
from even, as depicted in Fig. 4(b); 2) Spectral filtering (Spec.
module) remains vital for discriminative node representation
learning. Specifically, the quality of the adapted new graph
fundamentally hinges on the graph spectral filters’ training,
as underscored by their theoretical interaction in Eq. (6).
Practically, the absence of spectral filtering markedly reduces
model accuracy, confirming its importance in SAF; 3) This
visualization not only reaffirms the pivotal role of the non-local
aggregation (Spat. module), but also underscores its position
as the most crucial component in advancing spectral GNNs
within the SAF framework.

F. Parameter Study

This section presents the sensitivity analysis of hyper-
parameters including τ , η, ϵ, and L. Fig. 6 visualizes how
varying these parameters within a broad range influences
learning performance, showcasing our model’s robust stability
over diverse settings. Beyond empirical observation, we also
provides deeper insights into parameter understanding and
rationalizes the chosen ranges for parameter searching: 1) The
scaling parameter τ = α

1−α , crucial in new graph construction
in Eq. (6), stems from the trade-off parameter α ∈ (0, 1)
within the graph optimization problem in Eq. (3). While
theoretically we have 0 = 0

1−0 < τ < 1
1−1 = ∞, practical

considerations for extracting structural information suggest
a larger penalty on the trace objective term tr(ZT γθ(L̂)Z),
i.e., keeping α < 0.5, thereby limiting τ < 0.5

1−0.5 = 1.
This rationale substantiates our selection of τ within the set
{0.1, 0.2, ..., 1} as stated in Section VI-A4, aligning with
the observed optimal performance in Figures 6(a)-(e). When
addressing graphs with noisy structure, we may adjust the
upper limit of α to t ∈ (0, 1), setting τ ’s maximum possible
value to t

1−t . For graph benchmarking evaluations in this
work, where extracting structural information is important,
we practically set t = 0.5; 2) For the non-local aggregation
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TABLE V
FULL-SUPERVISED NODE CLASSIFICATION ACCURACY (%) WHILE IMPLEMENTING SAF UPON CHEBNETII.

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

ChebNetII 71.37±1.01 57.72±0.59 93.28±1.47 92.30±1.48 41.75±1.07 88.71±0.93 80.53±0.79 88.93±0.29
SAF-Cheb 74.97±0.66 64.06±0.59 94.43±1.81 92.62±2.13 42.65±1.01 89.56±0.64 80.68±0.68 91.27±0.34
SAF-Cheb-ϵ 75.25±0.96 64.42±0.82 94.26±1.64 93.12±1.64 42.79±1.04 89.61±0.71 81.08±0.68 91.73±0.18

Improv. 3.88% 6.70% 1.15% 0.82% 1.04% 0.90% 0.15% 2.80%

layer number L, a noticeable decline in model performance is
observed when L exceeds 10. This is attributed to the non-local
nature of our new graph, which facilitates efficient information
exchange between nodes. Exceeding a certain number of layers
may potentially lead to oversmoothing, where there is an
overemphasis on global information, thus degrading model
performance. However, choosing the number of layers within
a reasonable range generally ensures consistent and impressive
model performance, as verified in Figures 6(j)-(l).

G. New Benchmarks for Graph Heterophily

For a more extensive evaluation across various domains, we
also test SAF on five recently introduced datasets, including
Mine., Tolo., Amaz., Roma., and Penn94 [67], [84]. In this
context, we draw comparisons solely with MLP, GCN, APPNP,
along with seven GNN models that have previously shown
promising results in prior tasks, namely GPR-GNN, BernNet,
ChebNetII, JacobiConv, NodeFormer, GloGNN++ and FE-
GNN. Table IV lists the average classification accuracies,
obtained over random splits provided by [67], [84], with a
distribution of 50%/25%/25% for training/validation/testing.
In summary, SAF achieves significant performance gains of
12.79% and 4.03% on Minesweeper and Tolokers datasets,
respectively, while maintaining competitiveness on the others.

H. SAF with ChebNetII as Base Model

To expand the versatility of our SAF framework, we intro-
duced ChebNetII [15] as an alternative base model, chosen
for its adherence to the non-negative constraint, critical in our
model design as stated in Section V. The rationale behind
this choice is ChebNetII’s use of Chebyshev interpolation for
learning Chebyshev polynomials, where the constraint can be
ensured by keeping its learnable parameters {γj}Kj=0 non-
negative. Our experiments, as shown in Table V, confirm
that SAF can significantly enhances ChebNetII’s performance,
underscoring the framework’s flexibility with different spectral
filters. Interestingly, we observed that SAF, utilizing Bernstein
polynomials (SAF-Bern), slightly surpasses its performance
with Chebyshev polynomials (SAF-Cheb) in most datasets.
The margin of improvement over the base model is also
more pronounced with SAF-Bern. This phenomenon could
be attributed to the gϕ(λ) ≤ 1 constraint within SAF (refer
to Section V), necessitating the rescaling of filter functions
by their maximum values. For Bernstein polynomials, this
maximum is readily obtained as the largest polynomial co-
efficient max{ϕk}Kk=0, as per Proposition 3. However, for
Chebyshev polynomials, the best theoretical upper bound is
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Fig. 7. Improved classification accuracy by GloGNN++, LRGNN and our
SAF (from left to right) over the vanilla GCN under semi-supervised setting
(2.5%/2.5%/95%).

the sum of absolute coefficients,
∑K
k=0 |ϕk|, which is compar-

atively less precise. This difference may impact the quality of
graph construction and, subsequently, compromise the model’s
performance. Exploring these nuances will be a focal point of
our future research.

I. Supervision Dependence in GloGNN++ and LRGNN

This subsection empirically verifies the heavy reliance on
label supervision for both GloGNN++ [56] and LRGNN [86]
models. In Fig. 7, we compare the improved classification
accuracy of these models and our SAF upon the vanilla GCN
under a semi-supervised setting. The figure illustrates that,
despite competitive results under dense supervision (Table III),
the performance of both GloGNN++ and LRGNN deteriorates,
demonstrating negative optimization on many datasets, when
the label rate drops approximately from 60% to 2.5%. This
degradation highlights their dependency on high label rates
for effective learning. In contrast, our SAF constantly delivers
good performance regardless of the supervision level, showing
its effectiveness in both high and low label rate scenarios.

J. Time and Space Overheads

1) Eigendecomposition: Our SAF framework pre-computes
eigendecomposition once per graph and reuses it in Eq. (6)
in both training and inference. This aspect is crucial, as
the forward-pass cost in model training often exceeds the
preprocessing expense of eigendecomposition. To empirically
validate this, we compare the time overheads of eigendecom-
position with the training times of various models in Table VI.
Overall, we have following observations: 1) For datasets with a
small number of nodes, the time consumed by decomposition
is significantly less than the time required for model training;
2) For medium-sized graphs such as Pubmed, while the full
decomposition time exceeds that of BernNet, it still maintains
efficiency against more advanced GNNs such as ChebNetII,
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TABLE VI
TIME OVERHEADS (S).

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm. Penn94
# Nodes 2,277 5,201 183 183 7,600 2,708 3,327 19,717 41,554
# Edges 36,101 217,073 309 295 33,544 5,429 4,732 44,338 1,362,229

BernNet 8.36 13.74 3.92 4.16 4.88 5.24 5.52 6.06 24.05
ChebNetII 22.82 30.73 11.47 9.64 14.88 19.96 16.14 36.91 41.67
FE-GNN 3.99 45.89 1.03 0.84 0.98 2.54 2.06 6.78 7.33
NodeFormer 58.96 79.66 14.29 18.89 66.20 19.25 32.00 68.57 122.91
GloGNN++ 35.63 68.31 4.47 3.00 73.13 32.68 12.35 5266.53 3614.37

SAF 11.55 18.78 4.38 4.70 5.36 6.04 6.12 18.43 23.49
Decomposition 0.58 1.59 0.02 0.02 3.93 1.00 0.77 21.34 4.76

TABLE VII
SPACE OVERHEADS (MB).

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm. Penn94

BernNet 72 232 5 5 292 64 152 1546 1902
ChebNetII 72 231 5 5 291 63 152 1584 1850
FE-GNN 1337 6919 23 10 416 302 740 2213 5854
NodeFormer 1522 3965 15 37 775 480 764 2119 3056
GloGNN++ 290 1525 5 5 2471 331 607 17892 25260

SAF 112 440 5 5 733 120 237 4515 8491
Decomposition 141 540 1 1 1206 140 239 7641 4

NodeFormer and GloGNN++; 3) Moving to the large-scale
graph, Penn94 (with 41,554 nodes and 1,362,229 edges),
where only partial eigendecomposition with 100 extremal
eigenvalues is considered, the computation time is markedly
reduced compared to all the models. For space overheads in
Table VII, similar patterns can be observed.

2) Model Comparison: In Table VI, we compare the run-
ning times of our SAF against two notable spectral GNNs
(BernNet, ChebNetII), two non-local GNNs (NodeFormer,
GloGNN++), and one unified GNN model (FE-GNN). Gen-
erally, one can observe that SAF, while slightly slower than
its base model, BernNet, due to the integration of non-local
spatial aggregation, remains more efficient than or comparable
to other SOTA methods, particularly those also employing
non-local approaches such as NodeFormer and GloGNN++.

VII. CONCLUSION

This study presents a cross-domain analysis on GNN
models, offering a fresh perspective by rethinking spectral
GNNs from a spatial lens. We reveal that spectral GNNs
fundamentally leads the original graph to an adapted new
one, which exhibits non-locality and accommodates signed
edge weights to reflect label consistency among nodes. This
insight leads to our proposed Spatially Adaptive Filtering
(SAF) framework, enhancing spectral GNNs for more effec-
tive and versatile graph representation learning. While SAF
adeptly captures long-range dependencies and addresses graph
heterophily, we acknowledge two limitations of this work: 1)
the non-negative constraints of the proposed SAF on graph
filters might limit model expressiveness, indicating room for
theoretical refinement; 2) although this study focuses on a

node-level investigation, it raises intriguing questions about
the implications of spectral GNNs at the graph-level in the
spatial domain. Future work could expand this examination by
relaxing theoretical constraints or exploring the cross-domain
interplay from a broader graph-level viewpoint.
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