
LGD-GCN: Local and Global Disentangled Graph Convolutional Networks

Jingwei Guo1, 2 Kaizhu Huang2 Xinping Yi1 Rui Zhang2

1 University of Liverpool, Liverpool, UK
2 Xi’an Jiaotong-Liverpool University, Suzhou, China

Jingwei.Guo@liverpool.ac.uk, Kaizhu.Huang@xjtlu.edu.cn
Xinping.Yi@liverpool.ac.uk, Rui.Zhang02@xjtlu.edu.cn

Abstract

Disentangled Graph Convolutional Network (Dis-
enGCN) is an encouraging framework to disentan-
gle the latent factors arising in a real-world graph.
However, it relies on disentangling information
heavily from a local range (i.e., a node and its
1-hop neighbors), while the local information in
many cases can be uneven and incomplete, hin-
dering the interpretabiliy power and model perfor-
mance of DisenGCN. In this papera, we introduce
a novel Local and Global Disentangled Graph Con-
volutional Network (LGD-GCN) to capture both
local and global information for graph disentan-
glement. LGD-GCN performs a statistical mixture
modeling to derive a factor-aware latent continuous
space, and then constructs different structures w.r.t.
different factors from the revealed space. In this
way, the global factor-specific information can be
efficiently and selectively encoded via a message
passing along these built structures, strengthen-
ing the intra-factor consistency. We also propose
a novel diversity promoting regularizer employed
with the latent space modeling, to encourage inter-
factor diversity. Evaluations of the proposed LGD-
GCN on the synthetic and real-world datasets
show a better interpretability and improved per-
formance in node classification over the existing
competitive models. Code is available at https:
//github.com/jingweio/LGD-GCN.

aThis paper is a lighter version of "Learning Dis-
entangled Graph Convolutional Networks Locally and
Globally" where the results and analysis have been re-
worked substantially. Digital Object Identifier https:
//doi.org/10.1109/TNNLS.2022.3195336.

1 INTRODUCTION

Graphs are emerging as an insightful structured data mod-
eling technique for capturing the similarity between data
samples and the relationship between entities. To mine the
domain-specific knowledge in graph structured data, Graph
Convolutional Networks (GCNs) have been proposed to inte-
grate the topological patterns and content features [Kipf and
Welling, 2017], demonstrating excellent expressive power
and growing popularity in various graph learning tasks, such
as node classification, link prediction, and recommenda-
tion [Wu et al., 2020, Chen and Wong, 2020].

Most state-of-the-art methods, such as [Kipf and Welling,
2017, Hamilton et al., 2017, Velickovic et al., 2018], study
node representations in a holistic approach, i.e., they inter-
pret the node neighborhood as a whole without considering
the within-distinctions. By contrast, a real-world graph typi-
cally contains multiple heterogeneous node relations which
in many cases are implicitly determined by various latent
factors shaping node aspects. For instance, a user in a social
network, usually links with different persons for different
reasons, such as family, work, and/or hobby, which poten-
tially characterize the user from different perspectives. The
existing holistic approaches usually fail to disentangle these
latent factors, rendering the learned representations hardly
explained and less informative.

Recently, Disentangled Graph Convolutional Network (Dis-
enGCN) [Ma et al., 2019] offers a promising framework
to disentangle the latent factors behind graph data via a
neighborhood partition. Despite the novel design, Disen-
GCN heavily relies on local node neighborhood, which may
bring unexpected issues. First, the information from local
ranges can be significantly varied across the entire graph.
Solely depending on it, DisenGCN could easily produce
latent representations losing consistent meaning of the asso-
ciated factor. That may weaken the intra-factor correlation
between disentangled features and leads to diminished inter-
pretability. Second, the local neighborhood information can
be scarce and limited especially considering sparse graphs,

https://github.com/jingweio/LGD-GCN
https://github.com/jingweio/LGD-GCN
https://jingweio.github.io/assets/pdf/tnnls22.pdf
https://jingweio.github.io/assets/pdf/tnnls22.pdf
https://jingweio.github.io/assets/pdf/tnnls22.pdf
https://doi.org/10.1109/TNNLS.2022.3195336
https://doi.org/10.1109/TNNLS.2022.3195336

prohibiting DisenGCN from generating informative node as-
pects and yielding favourable performance boost. A detailed
discussion can be seen later in Section 2.3.

To tackle this limitation, in this paper, we propose a novel
framework, termed as Local and Global Disentangled Graph
Convolutional Network (LGD-GCN), to learn disentangled
node representations capturing both local and global graph
information. The central idea is that disentangling the latent
factors inherent in a graph can benefit from a latent continu-
ous space which uncovers the underlying factor-aware node
relations. Specifically, we first leverage the neighborhood
routing mechanism to locally disentangle node represen-
tations into multiple latent units pertinent to different fac-
tors. Then, we propose to guide the disentanglement from a
global perspective.

To this end, our approach performs a mixture statistical
modeling over the locally disentangled latent units, to de-
rive a factor-aware latent continuous space. This enables
a different component or mode, specific to a latent factor,
in a different region of the latent space [Ghahramani and
Hinton, 1996]. After that, we manage to build a different
structure by connecting near neighbors in a different region
of the revealed latent space. These latent structures disclose
the underlying factor-aware relations between nodes. Em-
ploying message passing along them can efficiently and
selectively encode the global factor-specific information,
which enhances intra-factor consistency, i.e., the consistent
meaning of disentangled latent units w.r.t. the associated fac-
tor. Furthermore, we also design a novel diversity promoting
regularizer to encourage inter-factor diversity. Practically,
it enforces the disentangled latent units related to different
factors to fall into separate clusters in the latent space so
as to enhance the disentangled informativeness. In sharp
contrast to DisenGCN, Fig. 1 clearly visualizes the benefit
of learning disentangled node representations both locally
and globally. Our contributions are summarized as below:

• We argue that DisenGCN may bring unexpected issues
by heavily relying on local graph information. Empir-
ical analysis shows that DisenGCN may learn latent
representations with weakly disentangled factors, and
especially its boost performance becomes minor while
facing sparse graphs.

• We propose a novel Local and Global Disentangled
framework for Graph Convolutional Networks (LGD-
GCN) to infer the latent factors underlying the graph
data. Incorporating both local and global information,
LGD-GCN can disentangle node representations with
enhanced intra-factor consistency and promoted inter-
factor diversity.

• Extensive evaluations on synthetic and real-world
datasets demonstrate that LGD-GCN provides a bet-
ter interpretability and improved performance in node
classification compared to other state-of-the-arts.

(a) DisenGCN (b) LGD-GCN (Ours)

Figure 1: Visualization of the disentangled latent units w.r.t.
four latent factors on a synthetic graph. Points with a differ-
ent color mean the disentangled latent units (for all nodes)
of a different latent factor. In sharp contrast to DisenGCN,
our LGD-GCN displays a highly disentangled pattern with
strong intra-factor consistency and inter-factor diversity; it
indicates high (low) intra-factor (inter-factor) correlations
between features

2 BACKGROUND AND MOTIVATION

2.1 CONVENTIONAL GNNS

Graph neural networks (GNNs) are powerful machine learn-
ing models in dealing with graph-structured data, where the
input data are modeled as graphs. A graph is denoted as
G = (V,E) with V being the set of nodes and E being the
set of edges. Given two distinct nodes u,v ∈V with u ̸= v,
we define (u,v) ∈ E if u and v are connected with an edge,
and the neighborhood of node u as Nu = {v|(u,v) ∈ E}. For
attributed graphs, each node u usually has an initial repre-
sentation h(0)

u ∈ Rd0 . GNNs are used to mine the underly-
ing relationship between nodes according to their attributes
{h(0)

u |∀u ∈V} for (semi-)supervised learning tasks such as
node classification and link prediction.

In the past years, an increasing number of GNN models
have been proposed [Wu et al., 2020]. Most of them can be
generalized by a message passing mechanism [Gilmer et al.,
2017], where the node attributes are exchanged through the
graph edges following a neighborhood aggregation strategy
descibed below.

hu← UPDATE(AGGREGATE({hv|∀v ∈ Nu}),hu),

where the AGGREGATE operation is to aggregate infor-
mation from a node neighborhood, and the UPDATE oper-
ation is to combine these information to update the node’s
attributes. Such a strategy works in an iterative way to learn
node representations. For graph-level representations, a read-
out operation, such as a simple mean or sum, can be applied
to summarize the overall information.

2.2 DISENTANGLED NODE REPRESENTATION

Albeit promising several learning tasks, most GNNs treat the
neighborhood as a whole and ignore the inner-differences,
learning noninterpretable representations. To address this
issue, DisenGCN [Ma et al., 2019] was proposed by hypoth-
esizing nodes are connected due mainly to different kinds of
relationship; and there are M inherent factors determining
edge connections and potentially shaping nodes from M
aspects.

DisenGCN aims to disentangle each node representation
into multiple latent units w.r.t. different latent factors. In
each layer, given a node u and its neighborhood Nu, the node
representations, {hi|∀i ∈ {u}∪Nu}, will be first projected
onto M subspaces using different channels. In each channel
m (m = 1,2, ...,M), the projected representation of node i is
given by

zi,m =
σ(WT

m hi +bm)

∥σ(WT
m hi +bm)∥2

(1)

where Wm ∈Rdin× dout
M and bm ∈R

dout
M are learnable parame-

ters, and σ is an activation function. A neighborhood routing
mechanism, detailed in [Ma et al., 2019, Algorithm-1], then
iteratively partitions all the neighbors into different clusters.
After that, independent information aggregations are applied
over them in different channels, to attain the disentangled
latent units for node u, {ẑu,m ∈ R

dout
M |∀m = 1,2, ...,M}. Fi-

nally, the disentangled node representation is obtained by
concatenation, ĥu = ẑu,1⊕ ẑu,2⊕ ...⊕ ẑu,M and ĥu ∈ Rdout .

2.3 LIMITATIONS OF DISENGCN

While DisenGCN reveals certain latent factors, we argue
that it tends to produce weakly disentangled representations
and yield limited performance boost because of its heavy re-
liance on local graph information. To validate our argument,
we further provide two experimental investigations over the
graph synthesized with four latent factors (see details in
Section 4.1).

First, we visualize the disentangled latent units of Disen-
GCN using t-SNE in Fig. 1a. At the micro-level, we can
observe the separability between points with different colors
in some regions. But, when it comes to the macro-level, all
points unexpectedly fall into discrete clusters and mixed to-
gether, indicating a weak disentanglement. This is because
the disentangled latent units by DisenGCN may preserve
some specific micro-meanings of the factor, but losing the
consistent macro-meaning (intra-factor consistency). Addi-
tionally, DisenGCN only considers disentangling represen-
tations in different channels without ensuring the diversity
between those w.r.t. different factors (inter-factor diversity).
The learned representations thereby are prone to preserve
the redundant information, partially explaining Fig. 1a.

Second, we further augment the synthetic graph by tuning

Table 1: Micro (Top) and Macro (Bottom) F1 scores (%) on
graphs synthesized with four latent factors but different average
neighborhood sizes

Methods Average Neighborhood Sizes
40 30 20 10 6

GCN 79.5±0.8 75.5±0.7 66.1±0.9 47.2±0.6 37.2±0.9
DisenGCN 84.1±1.0 79.5±0.7 69.0±1.0 48.8±0.9 38.4±0.8

Improvements +4.6% +4.0% +2.9% +1.6% +1.2%
GCN 78.3±0.9 75.0±0.8 65.8±1.0 45.8±0.6 36.7±0.8

DisenGCN 82.9±1.1 78.9±0.7 68.3±1.0 47.4±1.0 37.7±0.8
Improvements +4.6% +3.9% +2.5% +1.6% +1.0%

the p value (it controls the density of the synthetic graph as
described in Section 4.1) to generate graphs with multiple
average neighborhood sizes. We then apply GCN [Kipf
and Welling, 2017] and DisenGCN to train for multi-label
classification, and report the F1 scores in Table 1. From the
table, the relative improvements reduce from approximately
5% to 1% as the average neighborhood size decreasing from
40 to 6. The result meets the expectation. DisenGCN may
perform well on a dense graph by learning disentangled
representations. However, sparsing the input graph (limiting
the accessible local information) can negatively affect the
performance boost, which reflects the heavy local reliance
of DisenGCN.

3 LOCAL AND GLOBAL
DISENTANGLED GCN

We present an novel method for Graph Convolutional Net-
works (LGD-GCN) to disentangle node representations both
locally and globally, as presented in Fig. 2. By hiring the
neighborhood routing mechanism [Ma et al., 2019], we
first attain disentangled latent units preserving local graph
information w.r.t. different latent factors. However, these
disentangled units are prone to be weakly disentangled with-
out incorporating global information and being properly
regularized. In the following, we show how to enhance the
disentanglement from a global perspective, via disclosing
the underling factor-aware relations between nodes, to learn
a better disentangled representations with strengthened intra-
factor consistency and promoted inter-factor diversity.

3.1 MODELING LATENT CONTINUOUS SPACE

Extending the hypothesis in DisenGCN from local neigh-
borhood to global graph, we assume that the locally dis-
entangled units for all nodes, {ẑi,m ∈ R

dout
M |∀i ∈ V,∀m =

1,2, ...,M}, are generated from a gaussian mixture distribu-
tion with equal mixture weights, s.t.

p(ẑi,m) =
1
M

M

∑
e=1

N (ẑi,m; µe,Σe), (2)

where µe ∈ R
dout

M and Σe ∈ R
dout

M ×
dout

M are the mean and
the covariance associated with latent factor e. Then, we

Figure 2: Illustrative example of the LGD-GCN layer with M = 3 latent factors. First, the node representations are locally disentangled
by leveraging the neighborhood routing mechanism. These disentangled representations are then modeled in a latent continuous space,
and promoted with consistent and diverse latent factors globally, from which geometric structures are constructed for further aggregation.

employ this assumption to learn factor-specific means and
covariances to regularize the disentangling of the latent
units. Specifically, we maximize the conditional likelihood
of the latent units ẑi,m (for each node i and each factor m)
w.r.t. the associated factor m. It is equivalent to minimizing
the negative log term expressed in Eq. (3) after removing
constants.

Li,m = (ẑi,m−µm)
T

Σ
−1
m (ẑi,m−µm) (3)

Minimizing the term Li,m is equivalent to minimizing the
Mahalanobis Distance [De Maesschalck et al., 2000] be-
tween the disentangled latent unit and its globally inferred
center. It derives a latent continuous space where the disen-
tangled latent units are encouraged to be more discriminative
with respect to their centers, and to carry the type of global
factor-specific information shared by all nodes.

3.2 CONSTRUCTING LATENT STRUCTURES

Although node relations are naturally presented in graph
data, we believe that they are not always optimal for disen-
tangled graph learning. Taking a huge and sparse graph as
an example. It is difficult for most nodes to absorb sufficient
information, coming from a small number of their neighbors
(one or two in most cases), to learn disentangled represen-
tations w.r.t. latent factors in a larger number. On the other
hand, the raw graph may not contain the desired topolo-
gies after projecting node features in different channels. As
such, disclosing the underlying factor-aware relations be-
tween nodes from the disentangled latent space becomes a
promising alternative.

The previously modeled latent space enables a different com-
ponent or mode, specific to a different latent factor, in a dif-
ferent region. It would be reasonable to apply a proper graph
construction algorithm over different regions to obtain latent
structures specific to different factors. We expect these built
structures uncovering the factor-aware relations between

nodes, and selecting a sufficient number of latent neighbors
(from the entire graph) for each node in shaping node as-
pects. Accordingly, the global factor-specific information
can be efficiently and selectively encoded, by employing a
simple message passing scheme independently along these
different structures, to strengthen the intra-factor consis-
tency.

Here, we list two popular methods for building graphs from
data using local neighborhood in latent space:

1) k-Nearest-Neighbor (kNN): It connects every point to
its kth nearest neighbors, given a pairwise distance d(zi,z j).
Formally, the adjacency matrix AkNN ∈ {0,1}N×N is defined
as:

Aknn
i, j =

{
1 d(zi,z j)≤ d(zi,z

(k)
j) or d(zi,z j)≤ d(z(k)i ,z j)

0 otherwise

where z(k)i and z(k)j denote the kth nearest neighbors of zi
and z j, respectively.

2) Continuous k-Nearest-Neighbor (CkNN) [Berry and
Sauer, 2016]: It is a discrete version of kNN for removing
kNN’s sensitivity to the density parameter k. Similary, the
adjacency matrix ACkNN ∈ {0,1}N×N is defined as:

Acknn
i, j =

{
1 d(zi,z j)<

√
d(zi,z

(k)
i)d(z j,z

(k)
j)

0 otherwise

In this paper, we apply the same message passing function
in GCN [Kipf and Welling, 2017] to aggregate the factor-
specific node information along these constructed structures,
following Eq. (4).

Z̆(m) = D̆(m)−
1
2 Ă(m)D̆(m)−

1
2 Ẑ(m) (4)

Here, Â(m) refers to the built structures w.r.t. latent factor
m from {ẑi,m|∀i ∈ V}, Ă(m) = Â(m) + I, D̆(m)

i,i = ∑ j Ă(m)
i, j ,

D̆(m)
i, j = 0 in case of i ̸= j, and Ẑ(m) is the feature matrix

with each column being ẑi,m for node i in V . Particularly, we
adopt the Euclidean distance as the pairwise distance d(,),
and denote this proposed module as LGagg.

3.3 PROMOTING INTER-FACTOR DIVERSITY

Diversity-promoting learning aims to encourage different
components in latent space models to be mutually uncorre-
lated and different, and has been widely studied [Xie, 2018,
Xie et al., 2016]. In the previous sections, we derived a
factor-aware latent continuous space and built structures
for encoding factor-specific node information from a global
range, to strengthen the intra-factor consistency. However,
without being regularized to be different with respect to
different latent factors, the disentangled latent units may
preserve redundant information of other irrelevant latent
factors.

In this paper, we propose to promote the inter-factor diver-
sity to capture the unique information in disentangled latent
units. Particularly, we define the diversity on the conditional
likelihoods (given different factors) of each disentangled
latent unit in latent space. Inspired by the Determinant Point
Process [Kulesza and Taskar, 2012], we formulate the dis-
entanglement diversity for each node i as

DDi = det(F̂T
i F̂i), (5)

where F̂i =< L̂i,1, ..., L̂i,m, ..., L̂i,M >, L̂i,m = ∥Li,m∥2, and
Li,m =< N (ẑi,m; µ1,Σ1), ...,N (ẑi,m; µM,ΣM) > contains
the conditional likelihoods (given M factors) of the disen-
tangled latent unit ẑi,m.

By the property of Determinant [Bernstein, 2005], DDi is
equal to the volume spanned by {L̂i,m|∀m = 1,2, ...,M}, el-
egantly providing an intuitive geometric interpretation as
shown in Fig. 2 with M = 3. Maximizing DDi encourages
Li,1,Li,2, ...,Li,M to be orthogonal to each other, i.e., enforc-
ing the disentangled latent units to fall into separated regions
of the statistical latent space; it essentially enhances the dis-
entangled informativeness and promotes the inter-factor
diversity.

3.4 NETWORK ARCHITECTURE

In this section, we detail the general network architecture
of the proposed LGD-GCN for performing node-level tasks.
The pseudocode of a LGD-GCN’s layer is presented in
Algorithm 1, and it is desirable to stack multiple LGD-
GCN’s layers to sufficiently exploit the graph data.

Specifically, we adopt ReLU activation function in Eq. (1)
and append a dropout layer [Srivastava et al., 2014] in the
end of each LGD-GCN’s layer which is only enabled in
training. We can then have the output of layer l as {h̆(l)

i |∀i ∈
V} = Dropout(F(l)({h̆(l−1)

i |∀i ∈ V})), where 1 ≤ l ≤ L,

h̆(0)
i = h(0)

i , L denotes the number of stacked hidden lay-
ers, F(l) refers to LGD-GCN’s lth layer. Finally, a fully
connected layer is taken to map the learned node represen-
tations into another dimension, e.g. a class-level for node
classification, expressed as Y(L+1)

i = W(L+1)T h̆(L)
i +b(L+1),

where W(L+1) ∈ Rdout×C, b(L+1) ∈ RC, and C is the number
of class.

In this work, we focus on the task of node classification. To
incorporate Eq. (3) and Eq. (5) into the final optimization
problem, we leverage them into two regularization terms for
each node i, as expressed below.

L i
space =

1
M

M

∑
m=1

Li,m, L i
div =− log(DDi) (6)

For Li,m, we update µm and Σm (m = 1,2, ...,M) in each
layer iteratively with the newly computed values after each
training epoch by an update rate Ur. To adaptively modify
the influential power of these two regularization terms in
different layers, we apply a layer loss weight, λ (l) = 10l−L.
It makes the influence of the regularization terms grows
bigger as the layer goes deeper within a proper range. Then,
we can formulate the final loss in Eq. (7) with coefficients
λspace and λdiv for trade-off.

Ltotal = Lcls +
L

∑
l=1

λ
(l)(λspaceL

(l)
space +λdivL

(l)
div) (7)

Here, for single-label node classification, Lcls =

− 1
|V | ∑

V
i YT

i log(softmax(Y(L+1)
i)), and for multi-label

classification, Lcls = − 1
|V | ∑

V
i YT

i log(sigmoid(Y(L+1)
i)) +

(1−Yi)
T log(1− sigmoid(Y(L+1)

i)), given Yi ∈ RC being
the ground truth label of node i in one hot encoding. The
end-to-end optimization procedures are displayed in the
supplemental material.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets Cora, Citeseer, and Pubmed are three citation
benchmark networks widely used in [Kipf and Welling,
2017, Hamilton et al., 2017, Velickovic et al., 2018], where
nodes and edges denote documents and undirected citations
respectively; each node is assigned with one topic and asso-
ciated with bags-of-words features. We synthesize graphs
with latent factors following [Ma et al., 2019]. In detail,
we first generate m Erdős-Rényi random graphs with 1,000
nodes and 16 classes, where nodes connect each other with
probability p if they are in the same class, with probability q
otherwise. Then, we merge these generated graphs by sum-
ming the adjacency matrix and turning the element-value
bigger than zero to one, to obtain the final synthetic graphs

Algorithm 1: LGD-GCN’s Layer

Input: {hi ∈ Rdin |∀i ∈V}; M: the number of latent factors; T :
the routing iterations’ number of the Neighborhood Routing
Mechanism (NRM);

Parameter:
Wm ∈ Rdin× dout

M ,bm ∈ R
dout

M ,µm ∈ R
dout

M ,Σm ∈ R
dout

M ×
dout

M ,
∀m = 1,2, ...,M

for i ∈V do
zi,1,zi,2, ...,zi,M ← hi by Eq. (1).

end
for i ∈V do

ẑi,m←{zi,m}∪{zv,m|∀v ∈ Ni},∀m = 1,2, ...,M by NRM
with T routing iterations.

Minimize L i
space and L i

div by Eq. (6).
end
for m = 1,2, ...,M do

Construct structure G(m) with A(m) from {ẑi,m|∀i ∈V}.
{z̆i,m|∀i ∈V}← {ẑi,m|∀i ∈V} by Eq. (4).

end
Output: {z̆i,1⊕ z̆i,2⊕·· ·⊕ z̆i,M |∀i ∈V}

Table 2: Semi-supervised classification accuracies (%)

Method Splits Datasets
Cora Citeseer Pubmed

MLP

Standard

51.5±1.0 46.5 71.4
MoNet 82.2±0.7 70.0±0.6 77.7±0.6
GCN 81.9±0.8 69.5±0.9 79.0±0.5
GAT 82.5±0.5 71.0±0.6 77.0±1.3

DisenGCN 83.7 73.4 80.5
LGD-GCN (ours) 84.9±0.4 74.5±0.8 81.3±0.6

MLP

Random

58.2±2.1 59.1±2.3 70.0±2.1
MoNet 81.3±1.3 71.2±2.0 78.6±2.3
GCN 81.5±1.3 71.9±1.9 77.8±2.9
GAT 81.8±1.3 71.4±1.9 78.7±2.3

DisenGCN 81.4±1.6 69.5±1.4 79.1±2.3
LGD-GCN (ours) 84.0±1.3 72.0±1.3 79.8±2.3

with m latent factors. We set q to 3e−5 following [Ma et al.,
2019], and tune p value such that the average neighborhood
size is between 39.5 and 40.5. Each node is initialized with
the row of the adjacency matrix as the features and has m
labels. The data statistics are listed in the supplementary
material.

Baseline Models. We compare our model with several meth-
ods, including the state-of-the-art, as the baselines: MLP is
a multi-layer perception; MoNet [Monti et al., 2017] is a
mixture model CNN generalizing convolutional neural net-
work to non-Euclidean graph data structure; GCN [Kipf and
Welling, 2017] approximates graph Laplacian with Cheby-
shev expainsion; GAT [Velickovic et al., 2018] combines
the attention mechanism with graph neural networks to ag-
gregate information with selective neighbors; DisenGCN
attempts to learn disentangled node representations via a
neighborhood routing mechanism.

Hyper-parameters. We set dout = 64 as the output di-
mension of each LGD-GCN’s hidden layer and T = 7 as
the number of routing iterations, to follow GAT [Velick-
ovic et al., 2018] and DisenGCN respectively. For semi-

Table 3: Micro-F1 (Top) and Macro-F1 (Bottom) scores (%)
on synthetic graphs with different number of latent factors

Number of Latent Factors
Method 4 6 8 10 12

MLP 79.3±0.5 55.5±0.4 37.0±0.8 25.9±0.6 21.2±0.8
GCN 74.5±0.8 56.3±0.7 38.2±0.9 28.0±0.7 23.1±0.8

DisenGCN 84.1±1.0 60.4±0.9 41.4±1.3 29.4±0.7 24.2±0.8
LGD-GCN (ours) 87.2±0.5 65.0±0.5 43.6±0.7 30.2±0.5 26.1±0.5

MLP 77.9±0.7 54.8±0.6 36.0±0.8 24.5±0.7 20.1±0.9
GCN 78.3±0.9 55.6±0.9 37.2±1.0 26.9±0.5 22.2±0.9

DisenGCN 82.9±1.1 59.9±1.0 40.2±1.2 28.1±0.7 23.4±0.7
LGD-GCN (ours) 86.1±0.5 64.2±0.6 42.5±0.6 28.8±0.5 25.1±0.5

supervised node classification on real-world datasets, we
fix the number of channels M as 4 for simplification. We
use dropout∼ [0,1], learning rate∼ [3e−3,1], weight decay
∼ [5e−5,0.2], update rate ∼ [0.1,0.9] for µk and Σk, and
the number of layers ∼ {1,2, ...,10}. For multi-label classi-
fication on the synthetic datasets, with a slight difference,
we fix dropout as 0.5, learning rate ∼ [5e−4,5e−3], weight
decay ∼ [1e−3,1e−2], and M ∼ {2,4, ...,16}.

Additionally, the regularization coefficients λspace and λdiv
as well as the density parameter k are empirically searched
from different ranges for different datasets as provided in
the supplementary material. Then, we carefully tune the
hyper-parameters defined above on the validation set using
optuna [Akiba et al., 2019]. With the best hyper-parameters,
we train the model in 1,000 epochs using the early-stopping
strategy with a patience of 100 epochs, and report the aver-
age performance in 10 runs on the test split.

4.2 QUANTITATIVE EVALUATION

In this section, we evaluate our model quantitatively in tasks
of semi-supervised node classification and multi-label node
classification.

Semi-supervised Node Classification. In this task, we
follow the experimental protocal established by Kipf and
Welling [2017], Velickovic et al. [2018], and consider both
standard split [Yang et al., 2016] and random split. For
random split, we uniformly sample the same number of
instances as in the standard split in 10 times.

The results are listed in Table 2 measured in classification ac-
curacy. Since Shchur et al. [2018] have conducted extensive
evaluations in their work, we will quote their reported results
for baseline methods. For DisenGCN, we not only collect
their results, but also optimize and evaluate the model on
the random splits using their source codes. For our model,
considering the non-linear complexity of the real-world
datasets, we adopt CkNN [Berry and Sauer, 2016] in the
module LGagg.

From the results, the proposed LGD-GCN consistently out-
performs other baselines. Especially, our model is able to
improve upon DisenGCN by a margin of 1.2% and 2.6%
on Cora in standard and random splits, respectively. This

(a) DisenGCN (1st Layer) (b) LGD-GCN (1st Layer)

(c) LGD-GCN (2nd Layer) (d) LGD-GCNNG (2nd Layer)

Figure 3: Features correlation analysis

demonstrates the benefits brought by absorbing rich and
diverse global information. More importantly, real graphs
are typically highly sparse as observed in Cora, Citeseer and
Pubmed whose graphs contain an average neighbor number
of 3.9, 2.8 and 4.5 for each node. In this case, our model is
more effective in capturing long-range dependencies via the
created shortcuts in the built geometric structures, which
further explains the performance improvement.

Multi-label Node Classification. To further demonstrate
our model’s disentangling ability quantitatively, we apply
MLP, GCN, DisenGCN, and our model to train graphs syn-
thesized with various number of latent factors for multi-label
node classification. Specifically, we randomly split each syn-
thetic dataset into train/validation/test as 0.6/0.2/0.2, adopt
kNN in the module LGagg, measure model performance in
Micro-F1 and Macro-F1 scores, and report the results in
Table 3. It can be observed that our model consistently out-
performs others while varying the number of latent factors,
and especially achieves significant performance gains by
(micro-f1) 4.6% and (macro-f1) 4.3% upon DisenGCN on
the graph synthesized with six latent factors.

4.3 QUALITATIVE EVALUATION

The qualitative evaluation focuses on disentanglement per-
formance and informativeness of learned embeddings.

Visualization of disentangled representations. We give
in Fig. 1b a 2D visualization of the learned representations
w.r.t. four latent factors on the synthetic graph. Compared to
that of DisenGCN in Fig. 1a, our model displays a highly dis-
entangled pattern with consistent and diverse latent factors,
evidenced by the intra-factor compactness and inter-factor
separability; it also indicates the nodes carry the common
type of factor-specific global information.

(a) DisenGCN (b) LGD-GCN

Figure 4: Visualization of node embedding on Citeseer

Correlation of disentangled features. The correlation anal-
ysis of the latent features, learned by DisenGCN and our
model on test split of the graph synthesized with four la-
tent factors, is presented in Fig. 3. As observed, our model
showcases a more block-wise correlation pattern, which be-
comes denser in the second layer, indicating the enhanced
interpretability. We also analyze the feature correlation of
our model while ablating the module LGagg, denoted as
LGD-GCNNG in Fig. 3d. Though the block-wise pattern in
Fig. 3d can still be observed, it is obviously weaker than
that of LGD-GCN in Fig. 3c. This verifies the significance
of LGagg; the captured factor-specific global information
strengthens the factor-aware feature correlation, and en-
hances the interpretability of the learned representations.

Visualization of node embeddings. Fig. 4 provides a in-
tuitive comparison between the learned node embeddings
of DisenGCN and our model on Citeseer dataset. It can be
observed that the proposed LGD-GCN learns better node
embeddings and shows a high inter-class similarity and intra-
class difference. This is because our model learns more infor-
mative node aspects by absorbing rich factor-specific global
information, leading to increasing discriminative power.

4.4 PARAMETER AND ABLATION ANALYSIS

We investigate the sensitivity of hyper-parameters, and per-
form ablation analysis over the proposed modules on real-
world and synthetic datasets.

Analysis of consistency coefficient λspace. We plot the
learning performance of our model w/o Ldiv while vary-
ing λspace in Eq. (7) e.g. from 0 to 5 on Cora in Fig. 5a. The
accuracy goes up first and drops slowly. Practically, promis-
ing performance can be attained on Cora by choosing λspace
from [0.1, 1].

Analysis of diversity coefficient λdiv. We then test the effect
of λdiv in Eq. (7), and vary it from e.g. 0 to 0.5 on Citeseer.
λdiv is relatively robust within a certain range e.g. [0, 0.1]
for Citeseer in Fig. 6b. Once out of that range, the results
drops to a low point, suggesting overly focusing on diversity
is harmful to model performance.

(a) Cora (b) Citeseer

Figure 5: Analysis of parameter λspace

(a) Cora (b) Citeseer

Figure 6: Analysis of parameter λdiv

Analysis of density parameter k. Fig. 7 displays the im-
pact of k from 1 to 12 on Cora and Citeseer. The results
are relatively stable while selecting k from a wide range,
e.g. 1 to 8 on Cora and 1 to 10 on Citeseer. However, as
k getting larger, the accuracy performance deteriorates ob-
viously. It probably because larger k may introduce noisy
edges, leading to inappropriate information sharing.

Analysis of the number of channels M. We study the influ-
ence of the number of channels M on the synthetic graphs
generated with eight latent factors. From Fig. 8, our model
performs the best when the number of channels is around
eight, the true number of the latent factors.

Ablation analysis. We validate the contributions of the pro-
posed modules denoted by Lspace, Ldiv, and LGagg in node
classification. From Table 4, we can see that both modules
can independently and jointly improve the accuracy.

Table 4: Ablation analysis in node classification accuracies.
Components Cora Citeseer Pubmed

-

%

81.9±1.1 70.4±1.6 78.9±0.7
Lspace 83.0±0.5 72.4±1.3 79.1±0.8

Lspace+Ldiv 83.6±0.6 72.4±1.1 79.1±0.4
Lspace+LGagg 84.4±0.3 74.0±0.7 81.3±0.6

Lspace+Ldiv+LGagg 84.9±0.4 74.5±0.8 81.2±0.7

5 CONCLUSION

In this paper, we propose a novel framework, termed Lo-
cal and Global Disentangled Graph Convolutional Net-
work (LGD-GCN), to disentangle node representations with
strengthened intra-factor consistency and promoted inter-
factor diversity. Extensive experiments demonstrate the im-
proved performance in node classification and enhanced
interpretability of the proposed LGD-GCN over existing
state-of-the-art approaches.

(a) Cora (b) Citeseer

Figure 7: Analysis of parameter k

Graph synthesized with eight latent factors

Figure 8: Analysis of parameter M

References

Takuya Akiba, Shotaro Sano, T. Yanase, Takeru Ohta, and
M. Koyama. Optuna: A next-generation hyperparam-
eter optimization framework. Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019.

D. Bernstein. Matrix mathematics: Theory, facts, and for-
mulas with application to linear systems theory. 2005.

Tyrus Berry and Timothy Sauer. Consistent manifold rep-
resentation for topological data analysis. arXiv preprint
arXiv:1606.02353, 2016.

Tianwen Chen and Raymond Chi-Wing Wong. Handling
information loss of graph neural networks for session-
based recommendation. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 1172–1180, 2020.

Roy De Maesschalck, Delphine Jouan-Rimbaud, and
Désiré L Massart. The mahalanobis distance. Chemo-
metrics and intelligent laboratory systems, 50(1):1–18,
2000.

Zoubin Ghahramani and Geoffrey E. Hinton. The em algo-
rithm for mixtures of factor analyzers. 1996.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In International Conference on
Machine Learning, pages 1263–1272. PMLR, 2017.

William L. Hamilton, Zhitao Ying, and J. Leskovec. In-
ductive representation learning on large graphs. In NIPS,
2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015.

Thomas Kipf and M. Welling. Semi-supervised clas-
sification with graph convolutional networks. ArXiv,
abs/1609.02907, 2017.

A. Kulesza and B. Taskar. Determinantal point processes
for machine learning. Found. Trends Mach. Learn., 5:
123–286, 2012.

Jianxin Ma, P. Cui, Kun Kuang, X. Wang, and Wenwu Zhu.
Disentangled graph convolutional networks. In ICML,
2019.

Federico Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svo-
boda, and M. Bronstein. Geometric deep learning on
graphs and manifolds using mixture model cnns. 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5425–5434, 2017.

O. Shchur, Maximilian Mumme, Aleksandar Bojchevski,
and Stephan Günnemann. Pitfalls of graph neural network
evaluation. ArXiv, abs/1811.05868, 2018.

N. Srivastava, Geoffrey E. Hinton, A. Krizhevsky, Ilya
Sutskever, and R. Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15:1929–1958, 2014.

Petar Velickovic, Guillem Cucurull, A. Casanova,
A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. ArXiv, abs/1710.10903, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, G. Long,
C. Zhang, and P. Yu. A comprehensive survey on graph
neural networks. IEEE transactions on neural networks
and learning systems, 2020.

B. Xie, Yingyu Liang, and L. Song. Diversity leads to
generalization in neural networks. ArXiv, abs/1611.03131,
2016.

Pengtao Xie. Diversity-promoting and large-scale machine
learning for healthcare. 2018.

Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting
semi-supervised learning with graph embeddings. ArXiv,
abs/1603.08861, 2016.

A SUPPLEMENTARY MATERIAL

In the supplementary material, for reproducibility, we pro-
vide the dataset information, algorithm and optimization
procedure, and hyper-parameters’ searching ranges. Finally,
we show more visualization results to validate our conclu-
sion in the manuscript.

A.1 DATASET STATISTICS

We list the information of datasets evaluated in the
manuscript in Table 5 and Table 6. For real-world datasets,
we only use 20 labeled nodes per class but with all the rest
nodes unlabeled for training, another 500 nodes for vali-
dation and early-stopping, and 1,000 nodes from the rest
for testing. For synthetic datasets, we specify the parame-
ters including probability p and probability q for generating
synthetic graphs with various number of latent factors.

A.2 ALGORITHM AND OPTIMIZATION

Algorithm 2 illustrates the optimization procedures in
pseudo-codes.

A.3 ADDITIONAL RESULTS

To further verify the importance of the module LGagg, we
ablate it from our model and visualize the disentangled rep-
resentations on the synthetic graph with four latent factors
in Fig. 9. Comparing to that of the original model, we can
witness an evident performance drop by the weakened intra-
factor compactness. Even worse, the integrated blue set in
Fig. 1b is broken into two disjoint clusters in Fig. 9 by turn-
ing off the module LGagg, indicating its effectiveness. We
also show the visualization of node embedding learned on
Cora dataset in Fig. 10. Similar to that on Citeseer dataset
in Fig. 4, our model learns better embeddings, evidenced by
intra-class compactness and inter-class separability.

Table 5: Real-world Dataset Statistics
Dataset Cora Citeseer Pubmed
Nodes 2708 3327 19717

Avg-Neighbors 3.9 2.8 4.5
Features 1433 3703 500
Classes 7 6 3
Train 140 120 60

Validation 500 500 500
Test 1000 1000 1000

Table 6: Parameters for generating synthetic datasets
Latent Factors 4 6 8 10 12

probablity p 0.164 0.110 0.082 0.065 0.055
probability q 3e-5 3e-5 3e-5 3e-5 3e-5

LGD-GCN w/o LGagg

Figure 9: Visualization of disentangled representations on a
synthetic graph with four latent factors

(a) DisenGCN (b) LGD-GCN

Figure 10: Visualization of node embedding on Cora

Algorithm 2: LGD-GCN’s Optimization Procedure

Input: {h(0)
i ∈ Rdin |∀i ∈V}; lr be the learning rate; Ur be the

update rate for µ
(l)
m ∈ R

dout
M and Σ

(l)
m ∈ R

dout
M ×

dout
M ,

∀m ∈ {1,2, ...,M},∀l = 1,2, ..,L, FΘ refers to the proposed
LGD-GCN with learnable weights Θ.

for number of training epochs do
Compute Ltotal by Eq. (7); Update Θ using Adam

optimizer [Kingma and Ba, 2015] with learning rate lr.
for l = 1,2, ...,L do

for i ∈V do
{z̆(l)i,1 , z̆

(l)
i,2 , ..., z̆

(l)
i,M}← FΘ(h̆

(l−1)
i);

end
for m = 1,2, ...M do

∗
µ
(l)
m ← 1

|V | ∑i∈V z̆i,m;
∗
Σ
(l)
m ← 1

|V | ∑i∈V (z̆i,m−µ
(l)
m)(z̆i,m−µ

(l)
m)T ;

µ
(l)
m ← (1−Ur)µ

(l)
m +Ur

∗
µ
(l)
m ;

Σ
(l)
m ← (1−Ur)Σ

(l)
m +Ur

∗
Σ
(l)
m ;

end
end

end

	Introduction
	Background and motivation
	Conventional GNNs
	disentangled node representation
	Limitations of DisenGCN

	Local and Global Disentangled GCN
	Modeling Latent Continuous Space
	Constructing Latent Structures
	Promoting Inter-Factor Diversity
	Network Architecture

	Experiments
	Experimental Setting
	Quantitative Evaluation
	Qualitative Evaluation
	Parameter and ablation analysis

	Conclusion
	Supplementary Material
	Dataset Statistics
	Algorithm and Optimization
	Additional Results

