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ES-GNN: Generalizing Graph Neural Networks
Beyond Homophily with Edge Splitting

Jingwei Guo, Kaizhu Huang*, Rui Zhang, and Xinping Yi

Abstract—While Graph Neural Networks (GNNs) have achieved enormous success in multiple graph analytical tasks, modern variants
mostly rely on the strong inductive bias of homophily. However, real-world networks typically exhibit both homophilic and heterophilic
linking patterns, wherein adjacent nodes may share dissimilar attributes and distinct labels. Therefore, GNNs smoothing node proximity
holistically may aggregate both task-relevant and irrelevant (even harmful) information, limiting their ability to generalize to heterophilic
graphs and potentially causing non-robustness. In this work, we propose a novel Edge Splitting GNN (ES-GNN) framework to
adaptively distinguish between graph edges either relevant or irrelevant to learning tasks. This essentially transfers the original graph
into two subgraphs with the same node set but complementary edge sets dynamically. Given that, information propagation separately
on these subgraphs and edge splitting are alternatively conducted, thus disentangling the task-relevant and irrelevant features.
Theoretically, we show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem, which further
illustrates our motivations and interprets the improved generalization beyond homophily. Extensive experiments over 11 benchmark
and 1 synthetic datasets not only demonstrate the effective performance of ES-GNN but also highlight its robustness to adversarial
graphs and mitigation of the over-smoothing problem.

Index Terms—Graph Neural Networks, Heterophilic Graphs, Disentangled Representation Learning, Graph Mining.
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1 INTRODUCTION

A S a ubiquitous data structure, graph can symbolize
complex relationships between entities in different do-

mains. For example, knowledge graphs describe the inter-
connections between real-world events, and social networks
store the online interactions between users. With the flour-
ishing of deep learning models on graph-structured data,
graph neural networks (GNNs) emerge as one of the most
powerful techniques in recent years. Owing to their re-
markable performance, GNNs have been widely adopted in
multiple graph-based learning tasks, such as link prediction,
node classification, and recommendation [1], [2], [3], [4].

Modern GNNs are mainly built upon a message passing
framework [5], where nodes’ representations are learned by
aggregating their transformed neighbors iteratively. From
the graph signal denoising viewpoint, this mechanism could
be seen as a low-pass filter [6], [7], [8], [9] that smooths the
signals between adjacent nodes. Several works [8], [10], [11],
[12], [13], [14], [15] refer this to smoothness or homophily as-
sumption in GNNs. Notably, they work well on homophilic
(assortative) graphs, from which the proximity information
of nodes can be utilized to predict their labels [16]. However,
real-world networks are typically abstracted from complex
systems, and sometimes display heterophilic (disassorta-
tive) properties whereby the opposite objects are attracted to
each other [17]. For instance, different types of amino acids
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are mostly interacted in many protein structures [10], and
most people in heterosexual dating networks prefer to link
with others of the opposite gender. Recent studies [10], [11],
[12], [13], [14], [18], [19], [20], [21], [22], [23] have shown
that the conventional neighborhood aggregation strategy
may not only cause the over-smoothing problem [24], [25]
but also severely hinder the generalization performance of
GNNs beyond homophily.

One reason why current GNNs perform poorly on het-
erophilic graphs, could be the mismatch between the la-
beling rules of nodes and their linking mechanism. The
former is the target that GNNs are expected to learn for
classification tasks, while the latter specifies how messages
pass among nodes for attaining this goal. In homophilic sce-
narios, both of them are similar in the sense that most nodes
are linked because of their commonality which therefore
leads to identical labels. In heterophilic scenarios, however,
the motivation underlying why two nodes get connected
may be ambiguous to the classification task. Let us take the
social network within a university as an example, where
students from different clubs can be linked usually due
to taking the same classes and/or being roommates but
not sharing the same hobbies. Namely, the task-relevant
and irrelevant (or even harmful) information is typically
mixed into node neighborhood under heterophily. However,
current methods usually fail to recognize and differentiate
these two types of information within nodes’ proximity, as
illustrated in Fig. 1. As a consequence, the learned repre-
sentations are prone to be entangled with false information,
leading to non-robustness and sub-optimal performance.

Once the issue of GNNs’ learning beyond homophily
is identified, a natural question arises: Can we design a
new type of GNNs that is adaptive to both homophilic and
heterophilic scenarios? Well formed designs should be able to
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identify the node connections irrelevant to learning tasks,
and substantially extract the most correlated information
for prediction. However, the assortativity of real-world net-
works is usually agnostic. Even worse, the features of nodes
are typically full of noises, where similarity or dissimilar-
ity between connected ones may not actually reflect their
class relations. Existing techniques including [18], [26], [27]
usually parameterize graph edges with node similarity or
dissimilarity, and cannot well assess the correlation between
node connections and the downstream target.

In this paper, we propose ES-GNN, an end-to-end graph
learning framework that generalizes GNNs on graphs with
either homophily or heterophily. Without loss of generality,
we make an assumption that two nodes get connected
mainly because they share some similar features, which are
however unnecessarily just relevant to the learning task. In
other words, nodes may be linked due to similar features,
either relevant or irrelevant to the task. This implicitly di-
vides the original graph edges into two complementary sets,
each of which represents a latent relation between nodes.
Thanks to the proximity smoothness, aggregating node
features individually on each edge set should disentangle
the task-relevant and irrelevant features. Meanwhile, these
disentangled representations potentially reflect node simi-
larity in two aspects (task-relevant and irrelevant). As such,
they can be better utilized to split the original graph edges
more precisely. Motivated by this, the proposed framework
integrates GNNs with an interpretable edge splitting (ES),
to jointly partition network topology and disentangle node
features.

Technically, we design a residual scoring mechanism, ex-
ecuted within each ES-layer, to distinguish the task-relevant
and irrelevant graph edges. The node features are then
aggregated separately on these connections to produce dis-
entangled representations, based on which graph edges can
be classified more accurately in the next ES-layer. Finally,
the task-relevant representations are granted for prediction.
Meanwhile, an Irrelevant Consistency Regularization (ICR)
is developed to regulate the task-irrelevant representations
with the potential label-disagreement between adjacent
nodes, for further reducing the classification-harmful infor-
mation from the final predictive target. To interpret our new
algorithm theoretically, generalizing the standard smoothness
assumption [8], we also conduct some analysis on ES-GNN
and establish its connection with a disentangled graph signal
denoising problem. In summary, the main contributions of this
work are four-fold:

• We propose a novel framework called ES-GNN for
node classification tasks with one plausible hypoth-
esis, which enables GNNs to go beyond the strong
homophily assumption on graphs.

• We theoretically prove that our ES-GNN is equivalent
to solving a graph denoising problem with a disentan-
gled smoothness assumption, which interprets its good
performance on different types of networks.

• Extensive evaluations across 11 benchmark and 1 syn-
thetic datasets illustrate ES-GNN’s efficacy on graphs
with varying homophily levels, achieving an average
error reduction of 5.8% over a broad spectrum of
competitive methods.

• Importantly, ES-GNN is able to alleviate the over-
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Fig. 1. A toy example to show differences between conventional GNNs
and our ES-GNN in aggregating node features. Conventional GNNs with
local smoothness tend to produce non-discriminative representations
on heterophilic graphs, while our ES-GNN is able to disentangle and
exclude the task-harmful features from the final predictive target.

smoothing problem and enjoys remarkable robustness
against adversarial graphs. This shows that ES-GNN
could still lead to excellent performance even if the
disentangled smoothness assumption may not hold prac-
tically.

2 PRELIMINARIES

Let G = (V, E) be an undirected graph with node set
V = {vn}Nn=1 and edge set E , where N = |V| refers to
node number and (vi, vj) ∈ E if two distinct nodes vi, vj
are connected. We useNi to denote the 1-hop neighborhood
of node vi and define the adjacency matrix as A ∈ RN×N

where Ai,j = 1 if (vi, vj) ∈ E and 0 otherwise. The degree
matrix D can be obtained by summing the row of A into a
diagonal matrix. As our ES-GNN disentangles the original
graph into the task-relevant and irrelevant subgraphs, we
will denote their adjacency matrixes respectively as AR
and AIR in this paper. Nodes are usually associated with a
feature matrix X ∈ RN×F where F refers to the number of
raw feature and X[i,:] is the i-th row of X pertinent to node
vi. For node classification tasks, each node is assigned with
a label ci out of C ≤ N classes and have a ground truth one-
hot vector yi ∈ RC . In this context, real-world graphs can be
divided into homophilic and heterophilic ones based on the
extent of similarity (or dissimilarity) in class labels among
connected nodes. To quantify this level of homophily, re-
searchers have developed various metrics. Among these,
edge homophily H is a widely used metric that calculates
the proportion of edges connecting nodes with identical la-
bels, expressed as:H = |{(vi, vj)|yi = yj , (vi, vj) ∈ E}|/|E|.
This metric ranges from 0 (high heterophily) to 1 (high
homophily). Recently, more nuanced metrics such as class
homophily Hclass and adjusted homophily Hadjusted have
been proposed in works [28] and [29], respectively. These
metrics take into account potential class imbalance and the
variability in class number across different datasets, offering
a more accurate estimation.

3 BACKGROUND AND RELATED WORK

In this section, we provide the necessary background and
elucidate the connections between our work and previous
studies in the field (see subsections 3.1.1, 3.1.2 and 3.2.1).
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3.1 Graph Neural Networks

The central idea of most GNNs is to utilize nodes’ proximity
information for building their representations for tasks,
based on which great effort has been made in developing
different variants [6], [26], [30], [31], [32], [33], [34], [35],
[36], [37], [38], and understanding the nature of GNNs [8],
[9], [39], [40], [41], [42]. Several works have proved that
GNNs essentially behave as a low pass filter that smooths
information within node surrounding [6], [7], [16], [43]. In
line with this view, [9] and [8] show that a number of GNN
models, such as GCN [30] adopting first-order Chebyshev
expansion for efficient graph convolution, SGC [6] removing
non-linearity of GCN, and GAT [26] parameterizing graph
edges with an attention mechanism, can be seen as different
optimization solvers to a graph signal denoising problem
with a smoothness assumption upon connected nodes. All
these results indicate that most GNNs are designed with a
strong homophily hypothesis on the observed graphs while
largely overlooking the important setting of heterophily,
where node features and labels vary unsmoothly on graphs.

3.1.1 Connection to GNNs Tailored for Heterophily

This subsections briefly introduce GNNs tailored for ad-
dressing graphs under heterophilic scenarios and empha-
size the differences between their approaches and ours.

To extend GNNs on heterophilic graphs, several works
leverage the long-range information beyond nodes’ proxim-
ity. Geom-GCN [44] extends the standard message passing
with geometric aggregation in latent space. H2GCN [10]
directly models the higher order neighborhoods for cap-
turing the homophily-dominant information. WRGAT [14]
transforms the input graph into a multi-relational graph,
for modeling structural information and enhancing the
assortativity level. GEN [13] estimates a suitable graph
for GNNs’ learning with multi-order neighborhood infor-
mation and Bayesian inference as guide. GloGNN++ [23]
captures the global homophily beyond immediate neigh-
borhoods by learning a signed matrix to assess correlations
among nodes. Another line of work emphasizes the proper
utilization of node neighbors. The most common works
employ attention mechanism [26], [45], however, they are
still imposing smoothness within nodes’ neighborhood al-
beit on the important members only [7], [8], [9]. Compared
to that, FAGCN [18] adaptively models both similarities
and dissimilarities between adjacent nodes. GPR-GNN [11]
introduces a universal polynomial graph filter, by associ-
ating different hop neighbors with learnable weights in
both positive and negative signs, so as to extract both low-
and high-frequency information. ACM-GCN [46] proposes
a multi-channel filtering approach that adaptively exploit
both low- and high-frequency neighborhood information for
each node. GOAL [47] enhances the modeling of intra- and
inter-class node relationships through a graph complemen-
tary learning that recovers missing low- and high-frequency
information in the original network topology.

However, most of them overlook the motivations why
two nodes get connected, nor do they associate them with
learning tasks, which is analyzed as one of the keys to gen-
eralize GNNs beyond homophily in this paper. In contrast,
ES-GNN distinguishes graph edges as either relevant or

irrelevant to the task. Such information acts as a guide to
disentangle and exclude classification-harmful information
from the final predictive target, and thus boosts GNNs’
performance under heterophily.

3.1.2 Connection to GNNs Considering Task-Relevance

Following the previous discussion, where we highlighted
ES-GNN’s distinctive approach of discerning task-relevant
from irrelevant information amidst GNNs designed for het-
erophily, we now situate this idea within GNN research that
focuses on task-relevance. While the notion of emphasizing
task-relevant information is not new, this subsection is ded-
icated to clearly outlining how our work aligns with and
diverges from existing methodologies in this realm.

The concept of prioritizing task-relevance in GNNs has
been extensively explored across various domains, such as
topological denoising [48], [49], [50], graph pooling [51],
augmentations [52], [53], contrastive learning [54], and
structure learning [55], [56], [57]. Given our focus on super-
vised classification tasks, the forthcoming discussion will
be expressly centered around this area. This focus ensures
a contextual analysis of ES-GNN within the established
research landscape, highlighting its unique contributions to
task-oriented GNN development.

One should note that there are essential distinctions
between our method and the existing works of Neu-
ralSparse [48] and GCN-LPA [49], despite sharing the com-
mon goal of learning task-relevant edges. NeuralSparse
employs a sparsification mechanism that can be trained
with task loss, while GCN-LPA utilizes the outcome of label
propagation as a guide to learn edge weights. Although
these methods, like ours, actively select task-relevant edges
to facilitate the extraction of task-relevant information, they
primarily focus on this aspect, neglecting the potential bene-
fits of modeling the opposite, task-irrelevant aspect. In con-
trast, our ES-GNN diverges by implementing a disentangled
learning paradigm that partitions network topology and
decouples node features into task-relevant and irrelevant
parts. This explicit modeling of task-irrelevant information
allows ES-GNN to further reduce noise and enhance the
extraction of features with stronger correlations with the
task. In other words, our approach not only focuses on se-
lecting task-relevant edges but also strategically minimizes
the impact of irrelevant information, therefore excelling in
complex settings like heterophilic graphs (see Table 4).

Additionally, while both of our work and DOTIN [51]
explore the enhancement of GNNs by identifying task-
irrelevant graph information, the approaches we take di-
verge in their application and focus. While DOTIN fo-
cuses on streamlining graph classification by dropping task-
irrelevant nodes to boost efficiency and scalability, our ES-
GNN targets node-level tasks, emphasizing the discernment
of task-relevance in graph edges to generalize GNNs be-
yond homophily. Extending the core principles of ES-GNN
to graph-level tasks presents a promising future direction.

3.2 Disentangled Representation Learning

Disentangled representation learning, aimed at disentan-
gling the explanatory latent variables within observed data
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into distinct dimensions [58], [59], has garnered consid-
erable attention, particularly in the field of computer vi-
sion [60], [61], [62], [63], [64]. In recent years, there has
been a progressive expansion of disentangled representation
learning into the graph domain, addressing a wide spectrum
of tasks. These range from foundational classification [33],
[65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75]
and generation challenges [76], [77], [78], [79], [80], in both
supervised and unsupervised settings, to downstream ap-
plications like trajectory prediction [81], recommendation
systems [82], [83], [84], [85], [86], and graph neural archi-
tecture search [87]. Given our focus on foundational Graph
Neural Network (GNN) models, the following discussion
will concentrate on the subset of research that employs
disentangled representation learning to enhance the capa-
bilities of GNNs within the realm of fundamental tasks.

For instance, DisenGCN [65] introduces a neighborhood
routing mechanism to iteratively partition node neighbor-
hoods into distinct segments, paving the way for disen-
tangled node-level information learning. Following this,
IPGDN [66] and LGD-GCN [72] further enhance the model
by promoting independence among disentangled factors
and integrating global graph information, respectively. At
the graph-level, FactorGCN [33] takes a novel approach
by factorizing the original graph into multiple subgraphs,
aiming to highlight various graph aspects. VEPM [70] sub-
sequently extends this learning paradigm by developing an
edge generative model that incorporates community infor-
mation to partition edges. Distinct from the aforementioned
works, DisGNN [71] focuses explicitly on disentangling
graph edges. It employs three pretext tasks to guide the
learning process, aiming to enhance GNN performance un-
der heterophily settings – a goal that aligns closely with our
work.

Shifting the focus to unsupervised learning approaches,
DGCL [67] introduces a factor-wise discrimination objective
in a contrastive learning manner to disentangle graph-level
representations. Building upon this foundation, IDGCL [69]
further enhances this approach by promoting the inde-
pendence among the disentangled latent representations.
Complementing these at the node level, DSSL [68] advances
graph self-supervised learning by simulating a graph gener-
ative process through latent variable modeling of semantic
structures. This process effectively decouples diverse neigh-
borhood contexts, particularly benefiting the analysis of
non-homophilous graphs. In the realm of graph generation,
NED-VAE [76] stands out as a unsupervised approaches by
automatically disentangling latent factors in both nodes and
edges. SND-VAE [77] further advances this field as the first
disentangled generative model tailored for spatial networks.
It adeptly uncovers both independent and dependent latent
factors of spatial and network domains.

3.2.1 Connections to Disentangled GNNs
This subsection explores the relationships between our ES-
GNN model and established disentangled GNNs, such as
FactorGCN [33], VEPM [70] and DisGNN [71], specifically
within the context of supervised settings. Our emphasis on
supervised node classification tasks guides the selection of
these comparative models to highlight the unique contribu-
tions and distinctions of our approach.

First, we acknowledge that our work shares a founda-
tional similarity with both FactorGCN and VEPM: the aim
to decompose the original network topology into multiple
subgraphs for disentangling node features. However, there
are three main differences: 1) unlike FactorGCN, which
allows an edge to belong to multiple subgraphs, resulting
in potential overlap, our ES-GNN adopts an edge-splitting
strategy that adaptively divides the original network topol-
ogy into two mutually complementary subgraphs, ensuring
AR + AIR = A. In this aspect, VEPM is somewhat similar
to ours, also producing complementary subgraphs by nor-
malizing edge weights with a softmax layer. 2) FactorGCN
merely interprets the decomposed subgraphs as different
graph aspects without providing any concrete meanings,
and the number of latent factors requires manual selection
across different graphs. While VEPM attributes community
characteristics to these subgraphs, it falls short in link-
ing these characteristics directly to the task at hand, nor
does this approach address the variability in the commu-
nity number needed across graphs. In contrast, our model
uniquely generates two interpretable, task-relevant and ir-
relevant topologies adaptable to any graph, offering more
meaningful and application-specific insights. 3) FactorGCN
and VEPM integrate all disentangled components towards
the final prediction, with VEPM even remixing the disen-
tangled feature representations for prediction using a “rep-
resentation composer”. Diverging from them, our ES-GNN
focuses on segregating task-relevant from task-irrelevant
features, allowing for the exclusion of classification-harmful
information in the predictive process. This distinction is
particularly beneficial in heterophilic contexts, where task-
irrelevant information could easily obscure the target pre-
diction, as empirically validated in our experiments (see
Table 4).

Second, as previously mentioned when introducing Dis-
GNN, both our method and DisGNN aim to enhance GNN
performance on heterophilic graphs through explicit edge
disentanglement. However, unlike DisGNN, which relies on
multiple heuristic-based pretext tasks to supervise the edge
disentanglement process, our approach requires only the
addition of an Irrelevance Consistency Regularization (ICR)
loss alongside the main task loss. This ICR loss, systematic
in nature, adheres strictly to our core model principle as
outlined in Hypothesis 1. Moreover, similar to FactorGCN
and VEPM, DisGNN does not prioritize task relevance
when utilizing disentangled components for prediction.
This approach risks retaining misleading information in
heterophilic scenarios and potentially compromises model
performance.

4 FRAMEWORK: ES-GNN

In this section, we propose an end-to-end graph learning
framework, ES-GNN, generalizing Graph Neural Networks
(GNNs) to arbitrary graph-structured data with either ho-
mophilic or heterophilic properties. An overview of ES-
GNN is given in Fig. 2. The central idea is to integrate
GNNs with an interpretable edge splitting (ES) layer that
adaptively partitions the network topology as guide to
disentangle the task-relevant and irrelevant node features.
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4.1 Edge Splitting Layer

The goal of this layer is to infer the latent relations underly-
ing adjacent nodes on the observed graph, and distinguish
between graph edges which could be relevant or irrelevant
to learning tasks. Given a simple graph with an adjacency
matrix A and node feature matrix X, an ES-layer splits
the original graph edges into two complementary sets, and
thereby produces two partial network topologies with adja-
cency matrices AR,AIR ∈ RN×N satisfying AR +AIR = A.
We would expect AR storing the most correlated graph
edges to the classification task, of which the rest is excluded
and disentangled in AIR. Therefore, analyzing the correla-
tion between node connections and learning tasks comes
into the first step.

However, existing techniques [18], [26], [27] mainly pa-
rameterize graph edges with node similarity or dissimi-
larity, while failing to explicitly correlate them with the
prediction target. Even worse, as the assortativity of real-
world networks is usually agnostic and node features are
typically full of noises, the captured similarity/dissimilarity
may not truly reflect the label-agreement/disagreement be-
tween nearby nodes. Consequently, the harmful-similarity
between pairwise nodes from different classes could be mis-
takenly preserved for prediction. To this end, we present one
plausible hypothesis below, whereby the explicit correlation
between node connections and learning tasks is established
automatically.

Hypothesis 1. Two nodes get connected in a graph mainly due
to their similarity in some features, which could be either relevant
or irrelevant (even harmful) to the learning task.

This hypothesis is assumed without losing generality to
both homophilic and heterophilic graphs. For a homophilic
scenario, e.g., in citation networks, scientific papers tend to
cite or be cited by others from the same area, and both of
them usually possess the common keywords uniquely ap-
pearing in their topics. For a heterophilic scenario, students
having different interests are likely be connected because of
the same classes and/or dormitory they take and/or live in,
but neither has direct relation to the clubs they have joined.
This inspires us to classify graph edges by measuring the
similarity between adjacent nodes in two different aspects,
i.e., a graph edge is more relevant to a classification task if
connected nodes are more similar in their task-relevant features,
or otherwise. Our experimental analysis in Section 6.6 further
provides evidences that even when our Hypothesis 1 may
not hold, most adversarial edges (considered as the task-
irrelevant ones) can still be recognized though neither types
of node similarity exists.

It is worthy mentioning that our hypothesis is not in
contradiction to the “opposites attract”, which could be in-
tuitively explained by linking due to different but matching
attributes. We believe the inherent cause to connection even
in “opposites attract” may still be certain commonalities. For
example, in heterosexual dating networks, people of the op-
posite sex are most likely connected because of their similar
life values. Although these similarities may be inappropriate
(or even harmful) in distinguishing genders, modeling and
disentangling them from the final predictive target might be
still of great importance.

A, X

ZIR{ ZRA }, ,

Task-Relevant Topology

Task-Irrelevant Topology
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GNN AIR( )ZIR ,
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IRZR ← Z′ 
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YIrrelevant 
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Fig. 2. Illustration of ES-GNN framework where A and X denote the
adjacency matrix and feature matrix of nodes, respectively. First, X is
projected onto different latent subspaces via different channels R and
IR. An edge splitting is then performed to divide the original graph
edges into two complementary sets. After that, the node information
can be aggregated individually and separately on different edge sets
to produce disentangled representations, which are further utilized to
make an more accurate edge splitting in the next layer. The task-relevant
representation Z

′
R is reasonably granted for prediction, and an Irrelevant

Consistency Regularization (ICR) term is developed to further reduce
the potential task-harmful information from the final predictive target.

An ES-layer consists of two channels to respectively
extract the task-relevant and irrelevant information from
nodes. As only the raw feature matrix X is provided in the
beginning, we will project them into two different subspaces
before the first ES-layer:

Z(0)
s = σ(WT

s X+ bs), (1)

where Ws ∈ Rf× d
2 and bs ∈ R d

2 are the learnable parame-
ters in channel s ∈ {R, IR}, d is the number of node hidden
states, and σ is a nonlinear activation function.

Given Hypothesis 1, we adopt a flexible approach for
classifying node connections by using continuous edge
weights from 0 to 1, reflecting the varying degrees to which
edges are task-relevant or irrelevant. Nevertheless, applying
metrics to independently determine AR and AIR based on
node similarity may not fully capture the complex interplay
between different channels and could diminish the focus
on topological distinctions. To address this, for edges where
A(i,j) = 1, we parameterize the difference between AR(i,j)
and AIR(i,j), by solving the linear equation:{

AR(i,j) −AIR(i,j) = αi,j

AR(i,j) +AIR(i,j) = 1
.

This gives us AR(i,j) =
1+αi,j

2 and AIR(i,j) =
1−αi,j

2 with
−1 ≤ αi,j ≤ 1. To effectively quantify the interaction (or
relative importance) between the task-relevant and irrele-
vant aspects of each edge, we propose a residual scoring
mechanism:

αi,j = tanh(g
[
ZR[i,:] ⊕ ZIR[i,:] ⊕ ZR[j,:] ⊕ ZIR[j,:]

]T
). (2)

Here, both of the task-relevant and irrelevant node fea-
tures are first concatenated and convoluted by learnable
g ∈ R1×2d, and then passed to the tangent activation
function to produce a floating value between -1 and 1.
Similar learning scheme can be found in works [18], [26],
[27]. To further enhance the distinction between AR and AIR,
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while acknowledging their inherent continuous nature, one
can apply techniques, such as softmax with temperature in
Eq. (3), Gumbel-Softmax [88], [89] in Eq. (4), or thresholding
in Eq. (5). These methods aim to bring their values closer
to 0 or 1, thereby strengthening the clarity of task relevance
and promoting graph disentanglement.

A
′

s(i,j) =
exp(As(i,j)/τ)∑

κ∈{R,IR} exp(Aκ(i,j)/τ)
(3)

A
′

s(i,j) =
exp((log(As(i,j)) + γ)/τ)∑

κ∈{R,IR} exp((log(Aκ(i,j)) + γ)/τ)
(4)

A
′

s(i,j) =

{
1 As(i,j) > 0.5

0 otherwise
(5)

where s ∈ {R, IR}, τ is a hyper-parameter mediating dis-
creteness degree, and γ ∼ Gumbel(0, 1) is a Gumbel random
variable. However, in this work, we find good results with-
out adding any additional discretization techniques, and
will leave this investigation to the future work.

4.2 Aggregation Layer

As the split network topologies disclose the partial relations
among nodes in different latent spaces, they can be utilized
to aggregate information for learning different node aspects.
Specifically, we leverage a simple low-pass filter with scal-
ing parameters {ϵR, ϵIR} for both task-relevant and irrelevant
channels, from the k-th to k + 1-th layer:

Z(k+1)
s = ϵsZ

(0)
s + (1− ϵs)D

− 1
2

s AsD
− 1

2
s Z(k)

s . (6)

s ∈ {R, IR} denotes the task-relevant or irrelevant channel,
and Ds is the degree matrix associated with the adjacency
matrix As. Derivation of Eq. (6) is detailed in our theoretical
analysis. Importantly, by incorporating proximity informa-
tion in different structural spaces, the task-relevant and
irrelevant information can be better disentangled in Z

(k+1)
R

and Z
(k+1)
IR , based on which the next ES-layer can make a

more precise partition on the raw topology.

4.3 Irrelevant Consistency Regularization

Stacking ES-layer and aggregation layer iteratively lends
itself to disentangling different features of nodes into two
distinct representations, denoted by ZR and ZIR. First, ZR,
informed and shaped by AR, is tuned for prediction, with
its development guided by the minimization of the classifi-
cation loss Lpred. This process not only makes ZR predictive
of node labels but also implicitly reinforces the task-relevant
nature of AR via message passing. However, only super-
vising one channel (R) risks neglecting the meaningfulness
of the other (IR), potentially leading to the preservation
of erroneous information in predictions. To this end, we
introduce a Irrelevant Consistency Regularization (ICR) loss
LICR, designed to regulate ZIR as the opposite of ZR, i.e.,
identifying the classification-harmful information within the
observed graph.

The key rationale is to explore the similarities among
nodes that are detrimental to classification tasks within ZIR.
Given any node pairs (vi, vj) ∈ E , we would expect ZIR[i,:]

Algorithm 1 Framework of ES-GNN
Input: nodes set: V , edge set: E , adjacency matrix: A ∈

RN×N , node feature matrix: X ∈ R|V |×F , the number
of layers: K , scaling parameters: {ϵR, ϵIR}, irrelevant
consistency coefficient: λICR, and ground truth labels on
the training set: {yi ∈ RC |∀vi ∈ Vtrn}.

Param: WR,WIR ∈ Rf×d, WF ∈ Rd×C ,bF ∈ RC , {g(k) ∈
R1×2d|k = 0, 1, ...,K − 1}

1: // Project node features into two subspaces.
2: for s ∈ {R, IR} do
3: Z

(0)
s ← σ(WT

s X+ bs).
4: Z

(0)
s ← Dropout(Z(0)

s ) // Enabled only for training.
5: end for
6: // Stack Edge Splitting and Aggregation Layers.
7: for layer number k = 0, 1, ...,K − 1 do
8: // Edge Splitting Layer.
9: Initialize AR,AIR ∈ RN×N with zeros.

10: for (vi, vj) ∈ E do

11: αi,j ← tanh(g(k)
[
Z

(k)

R[i,:] ⊕ Z
(k)

IR[i,:] ⊕ Z
(k)

R[j,:] ⊕ Z
(k)

IR,[j,:]

]T
).

12: αi,j ← Dropout(αi,j) // Enabled only for training.
13: AR(i,j) ←

1+αi,j

2
, AIR(i,j) ←

1−αi,j

2
.

14: end for
15: // Aggregation Layer.
16: for s ∈ {R, IR} do
17: Z

(k+1)
s ← ϵsZ

(0)
s + (1− ϵs)D

− 1
2

s AsD
− 1

2
s Z

(k)
s .

18: end for
19: end for
20: // Prediction.
21: ŷi = softmax(WT

FZ
(K)
R[i,:] + bF ),∀vi ∈ V .

22: // Optimization with Irrelevant Consistency Regularization.
23: LICR =

∑
(vi,vj)∈E(1− δ(ŷi, ŷj))∥ZIR[i,:] − ZIR[j,:]∥22.

24: Lpred = − 1
|Vtrn|

∑
i∈Vtrn

yT
i log(ŷi).

25: Minimize Lpred + λICRLICR.

and ZIR[j,:] to be close in the latent space if they possess
different labels. Specifically, our ICR can be formulated as:

LICR =
∑

(vi,vj)∈E

(1− δ(yi,yj))∥ZIR[i,:] − ZIR[j,:]∥22,

where δ is a Kronecker function returning 1 if yi = yj

and 0 otherwise, and ∥ · ∥2 denotes L2 norm. As such,
ZIR is constrained with a local consistency between adjacent
nodes from different classes. As a benefit, the classification-
harmful information between nodes can be further excluded
from task-relevant features ZR, and disentangled in the task-
irrelevant ones ZIR.

Several powerful techniques [27], [90] have been de-
veloped to measure the label-agreement between pairwise
nodes. In this work, however, we find that using directly the
joint probability from model prediction works well, which
also offers advantages in low computational complexity as
no additional trainable parameters are required.

4.4 Overall Algorithm
The overall pipeline of ES-GNN is detailed in Algorithm 1.
Specifically, we adopt ReLU activation function in Eq. (1)
to first map node features into two different channels, and
then pass them with the adjacency matrix to an ES-layer for
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splitting the raw network topology into two complemen-
tary parts. After that, these two partial network topologies
are utilized to aggregate information in different structural
spaces. Alternatively stacking ES-layer and aggregation
layer not only enables more accurate disentanglement but
also explores the graph information beyond local neigh-
borhood. Finally, a fully connected layer is appended to
project the learned representations into class space RC . We
integrateLICR into the optimization process with a irrelevant
consistency coefficient λICR to have final objective function
below, where Lpred = − 1

|Vtrn|
∑

vi∈Vtrn
yT
i log(ŷi).

L = Lpred + λICRLICR. (7)

It is noted that the method ES-GNN employs in Eq. (2)
for learning edge weights diverges from the L2 space
metrics used in our ICR loss. While parameterizing edges
with node similarity in L2 space seems straightforward,
this method is only feasible for modeling task-relevant and
irrelevant channels independently. Such an approach may
not fully capture the intricate interactions across different
channels, possibly reducing the focus on topological distinc-
tions. Alternatively, our strategy employs a flexible attention
mechanism, unlike direct metric computation, allowing for
the nuanced learning of weight residuals between different
channels. Importantly, the use of learnable g in Eq. (2) lends
our method a universal fitting capability, enabling it to
adapt and bridge potential inconsistencies between different
framework components. This flexibility ensures that our
model effectively integrates and responds to the diverse
dynamics within the graph structure, maintaining our focus
on graph disentanglement.

Finally, we also report in Table 1 the complexity of our
ES-GNN in comparison with the baseline models evaluated
in the experimental section. Clearly, our model displays the
same complexity to FAGCN [18] while being slightly over-
head compared to GPR-GNN [11]. Here, we omit the related
works, such as GEN [13], WRGAT [14], GloGNN++ [23],
ACM-GCN [46], and GOAL [47] as their complexity is obvi-
ously higher than others by involving graph reconstruction
or node-wise operations.

5 THEORETICAL ANALYSIS

In this section, we investigate two important problems: (1)
what limits the generalization power of the conventional
GNNs on graphs beyond homophily, and (2) how the pro-
posed ES-GNN breaks this limit and performs well on dif-
ferent types of networks. We will answer these questions by
first analyzing the typical GNNs as graph signal denoising
from a more generalized viewpoint, and then impose our
Hypothesis 1 to derive ES-GNN.

5.1 Limited Generalization of Conventional GNNs
Recent studies [8], [9] have proved that most GNNs can be
regarded as solving a graph signal denoising problem:

argmin
Z

∥Z−X∥22 + ξ · tr(ZTLZ), (8)

where X ∈ RN×F is the input signal, L = D−A ∈ RN×N

is the graph Laplacian matrix, and ξ is a constant coefficient.
The first term guides Z to be close to X, while the second

TABLE 1
Time complexity of the comparison models with one hidden layer as an

example. Ne denotes the number of graph aspects assumed in
FactorGCN [33], Dmax represents the maximum node degree, and |E2|

is the total number of neighbors in the second hop of nodes. Other
symbols are earlier defined in the texts.

Models Complexity

GCN [30] O((f + C)|E|d)
GAT [26] O(((2 + f)N + (4 + C)|E|)d)
FactorGCN [33] O(NeN + (Nf + (3 + C)|E|)d)
H2GCN [10] O(fd+ |E|Dmax + (|E|+ |E2|)d)
FAGCN [18] O(((1 + C + f)N + |E|)d)
GPR-GNN [11] O((fN + |E|C)d)
ES-GNN (Ours) O(((1 + C + f)N + |E|)d)

term tr(ZTLZ) is the Laplacian regularization, enforcing
smoothness between connected nodes. One fundamental
assumption made here is that similar nodes should have
a higher tendency to connect each other, and we refer
it as standard smoothness assumption on graphs. However,
real-world networks typically exhibit diverse linking pat-
terns of both assortativity and disassortativity. Constrain-
ing smoothness on each node pair is prone to mistakenly
preserve both of the task-relevant and irrelevant (or even
harmful) information for prediction. Given that, we divide
the original graph into two subgraphs with the same nodes
sets but complementary edge sets, and reformulate Eq. (8)
as:

argmin
Z

∥Z−X∥22 + ξ · tr(ZTLRZ) + ξ · tr(ZTLIRZ).

Here, LR = DR − AR, and LIR = DIR − AIR, where the
task-relevant and irrelevant node relations are separately
captured in AR and AIR. Clearly, emphasizing the common-
ality between adjacent nodes in AR is beneficial for keeping
task-correlated information only. However, smoothing node
pairs in AIR simultaneously may preserve classification-
harmful similarity between nodes, thus limiting the predic-
tion performance of GNNs.

5.2 Disentangled Smoothness Assumption in ES-GNN

Our Hypothesis 1 suggests that the original graph topology
can be partitioned into two complementary ones, wherein
connected nodes displays high similarity with either task-
relevant or irrelevant features only. We further interpret this
result as disentangled smoothness assumption, based on which
the conventional graph signal denoising problem in Eq. (8)
can be generalized as:

argmin
ZR,ZIR

∥ZR −XR∥22 + ∥ZIR −XIR∥22

+ ξ · tr(ZT
R LRZR) + ξ · tr(ZT

IRLIRZIR)

where LR = DR −AR,LIR = DIR −AIR

s.t. AR +AIR = A

AR(i,j),AIR(i,j) ∈ [0, 1].

(9)

Here, AR(i,j) and AIR(i,j) measure the degree to which the
node connection (vi, vj) are relevant and irrelevant to the
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learning task, respectively. We further name this optimiza-
tion as disentangled graph denoising problem, and finally derive
the following theorem:

Theorem 1. The proposed ES-GNN is equivalent to the solution
of the disentangled graph denoising problem in Eq. (9).

Proof. Let XR ∈ R d
2 and XIR ∈ R d

2 be the results of mapping
X into different channels in Eq. (1), i.e., XR = Z

(0)
R and

XIR = Z
(0)
IR . Hypothesis 1 motivates us to define AR(i,j) and

AIR(i,j) as node similarity in two aspects. Combining above
constraints, we have a linear system in case of A(i,j) = 1:{

AR(i,j) +AIR(i,j) = 1

AR(i,j) −AIR(i,j) = ϕres(ZR[i,:],ZIR[i,:],ZR[j,:],ZIR[j,:])
,

where ϕres(·) outputs the residual between AR(i,j) and
AIR(i,j) considering both task-relevant and irrelevant node
information, and can be formulated with our residual scor-
ing mechanism in Eq. (2). Solving above equations, we can
express both AR and AIR in terms of ZR and ZIR, i.e.,

AR(i,j) =
1

2
(1 + αi,j), AIR(i,j) =

1

2
(1− αi,j). (10)

where αi,j = ϕres(ZR[i,:],ZIR[i,:],ZR[j,:],ZIR[j,:]). So far, the
optimization problem in Eq. (9) is only made up of variables
XR, XIR, ZR, and ZIR. Directly solving it is still however not
easy, as the mixing variables of ZR and ZIR, and the intro-
duced non-linear operator in ϕres(·) result in a complicated
differentiation process.

Instead, we can approach this problem by decoupling
the learning of AR,AIR from the optimization target, and
employ an alternative learning between stages. Suppose
we have attained the task-relevant and irrelevant node
features in the kth round, i.e., Z

(k)
R and Z

(k)
IR . In the

first stage, we can compute A
(k+1)
R(i,j) and A

(k+1)
IR(i,j) using

{Z(k)
R[i,:],Z

(k)
IR[i,:],Z

(k)
R,[j,:],Z

(k)
IR[j,:]} with Eq. (10), which in fact

turns out to be our ES-layer in Section 4.1.
In the second stage, injecting the computed values of

A
(k+1)
R(i,j) and A

(k+1)
IR(i,j) relaxes the mixture of variables ZR

and ZIR, and the original optimization problem can then
be disentangled into two independent targets (as all four
penalized terms are positive):

argmin
Z∗

R

∥Z∗
R − Z

(0)
R ∥

2
2 + ξ · tr(Z∗

R
TL

(k)
R Z∗

R) (11)

argmin
Z∗

IR

∥Z∗
IR − Z

(0)
IR ∥

2
2 + ξ · tr(Z∗

IR
TL

(k)
IR Z∗

IR) (12)

where L
(k)
R = D

(k)
R −A

(k)
R and L

(k)
IR = D

(k)
IR −A

(k)
IR are fixed

values. Lemma 1, on the R channel as an example, further
shows that our aggregation layer, on the task-relevant and
irrelevant topologies, in Section 4.2 is approximately solving
these two optimization problems in Eq. (11) and Eq. (12).

Therefore, stacking ES- and aggregation layers itera-
tively is equivalent to the above alternative learning for
solving the disentangled graph denoising problem in Eq. (9)
with XR = Z

(0)
R and XIR = Z

(0)
IR . Finally, given Z

(K)
R

and Z
(K)
IR , we minimize the prediction loss Lpred and the

Irrelevant Consistency Regularization LICR in Eq. (7) with
Adam [91] algorithm, which imposes concrete meanings on

different channels, and simultaneously ensures the conver-
gence of our described alternative learning.

Lemma 1. When adopting the normalized Laplacian matrix
LR = I − D

− 1
2

R ARD
− 1

2
R , the feature aggregation operator in

Eq. (6) with channel s = R can be regarded as solving Eq. (11)
using iterative gradient descent with stepsize β = 1

2+2ξ and
ξ = 1

ϵR
− 1.

Proof. We take iterative gradient descent with the stepsize β
to solve the denoising problem in Eq. (11) (referred as LR)
as follows:

Z
(k+1)
R = Z

(k)
R − β · ∂LR

∂Z∗
R
|
Z∗

R =Z
(k)
R

= 2βZ
(0)
R + 2βξ(D

− 1
2

R ARD
− 1

2
R )Z

(k)
R + (1− 2β − 2βξ)Z

(k)
R .

Setting β as 1
2+2ξ gives us:

Z
(k+1)
R =

1

1 + ξ
Z

(0)
R +

ξ

1 + ξ
(D

− 1
2

R ARD
− 1

2
R )Z

(k)
R ,

which is equivalent to Eq. (6) while choosing ξ = 1
ϵR
−1, i.e.,

Z
(k+1)
R = ϵRZ

(0)
R + (1− ϵR)(D

− 1
2

R ARD
− 1

2
R )Z

(k)
R .

As the possible classification-harmful similarity between
nodes (hidden in AIR) can be excluded from ZR and dis-
entangled in ZIR while optimizing Eq. (9), our ES-GNN
presents a universal approach that theoretically guarantees
good performance on different types of networks.

5.3 Aligning Disentangled and Conventional Problems

It is noted that Eq. (8) can be interpreted as a special case
of Eq. (9) in specific graph scenarios. This situation arises
in graphs where only edges connecting nodes with identical
labels exist, indicating that the similarity between adjacent
nodes should be beneficial in predicting their shared label.
In such cases, task-irrelevant edges may not exist, as all
connections inherently support the task. Consequently, in
this scenario, the objective term involving LIR in Eq. (9)
becomes redundant, amounting to zero, and the need for
disentangling ZR and ZIR is obviated. This leads to the sim-
plification of Eq. (9) into the conventional graph denoising
problem Eq. (8), conforming to the standard smoothness
assumption across the entire graph.

In practice, completely smooth graphs devoid of edges
linking nodes with different labels are rare. Nevertheless, for
homophilic graphs where most edges connect nodes from
the same class, such as in the citation network Cora with
homophily ratio 0.81, Eq. (8) serves as a close approximation
of Eq. (9). This approximation holds as the term involv-
ing LIR in Eq. (9) becomes negligible and the inherently
classification-harmful information in the graph is almost
non-existent. Empirical evidence from Fig. 4 in our study
reinforces this understanding, showing that on homophilic
graphs like Cora, the majority of informative content is
retained in the task-relevant channel, underscoring the min-
imal presence of classification-harmful information.
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TABLE 2
Statistics of real-world datasets.

Dataset |V| |E| F C H Hclass Hadjusted

Squirrel 5,201 217,073 2,089 5 0.22 0.03 0.01
Chameleon 2,227 36,101 2,325 5 0.23 0.06 0.03
Wisconsin 251 499 1,703 5 0.21 0.09 -0.17
Cornell 183 295 1,703 5 0.30 0.05 -0.08
Texas 183 309 1,703 5 0.11 0.00 -0.23
Twtich-DE 9,498 153,138 2,545 2 0.63 0.14 0.14
Actor 7,600 33,544 931 5 0.22 0.01 0.00

Cora 2,708 5,429 1,433 7 0.81 0.77 0.77
Citeseer 3,327 4,732 3,703 6 0.74 0.63 0.67
Pubmed 19,717 44,338 500 3 0.80 0.66 0.69
Polblogs 1,222 16,714 / 2 0.91 0.81 0.81

TABLE 3
Parameters for synthesizing graphs with varying homophily ratios.

Hsyn 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PE 0.02 0.06 0.1 0.2 0.4 0.4 0.6 0.7 0.8 0.9 0.96
PI 0.72 0.81 0.6 0.7 0.9 0.6 0.6 0.45 0.3 0.15 0.045
ω 0.1 0.084 0.1 0.075 0.05 0.062 0.05 0.05 0.05 0.05 0.051

6 EXPERIMENTS

We empirically evaluate our ES-GNN for node classification
using both synthetic and real-world datasets in this section.

6.1 Datasets and Experimental Setup
6.1.1 Real-World Datasets
We consider 11 widely used benchmark datasets includ-
ing both seven heterophilc graphs, i.e., Chameleon, Squir-
rel [92], Wisconsin, Cornell, Texas [44] (webpage networks),
Actor [93] (co-occurrence network), and Twitch-DE [28],
[92] (social network), as well as four homophilic graphs
including Cora, Citeseer, Pubmed [94] (citation networks),
and Polblogs [95], [96] (community network) with statistics
shown in Table 2. For Polblogs dataset, since node features
are not provided, we use the rows of the adjacency matrix.

6.1.2 Synthetic Data
To investigate the behavior of GNNs on graphs with ar-
bitrary levels of homophily and heterophily, we consider
the contextual stochastic block model (CSBM) [97], [98]
to construct synthetic graphs with our Hypothesis 1 as
guide. The central idea is to define links among nodes
under two conditions independently, of which only one is
correlated with the classification task. We consider 1,200
nodes, 3 equal-size classes, and 500 node features made up
of both explicit and implicit attributes. The explicit attributes
determine the label assignment, while implicit ones model
dependency across different classes. Fig. 3 further illustrates
their allocation to nodes with “shape” and “color” as an
example. Notably, all these attributes in six types (three
explicit and three implicit ones) are randomly sampled
from different Gaussian distributions, each pair of them
are combined via element-wise addition to attain the final
node features. For instance, the features of a node (from
class-i) with explicit attribute-i and implicit attribute-j are
defined as the addition of two random vectors respec-
tively sampled from N (µE,i,σE,i) and N (µI,j ,σI,j), where

... ...

. . .

. . .
. . .
. . .

Implicit Attributes pE ≪ pIHeterophilic Pattern
pE ≫ pIHomophilic Pattern

Explicit Attributes

... ...

. . .

. . .
. . .
. . .

PE

PI

... ...
. . .
. . .

. . .

. . .

Fig. 3. Synthetic graphs with varying levels of homophily. Node shape
and color refer to the explicit and implicit attributes, respectively. Nodes
sharing the same shape (or color) are connected with a probability
of PE (or PI) and are classified into three categories only based on
their different shapes. In this context, “shape” attributes represent task-
relevant features, whereas “color” attributes denote task-irrelevant ones.
It can be intuitively observed that adequate disentanglement of these
attributes is crucial for classification tasks; otherwise, model prediction
will inevitably suffer, as misled by the task-irrelevant “color” information.

µE,i,µI,j ∈ RFsyn are means, σE,i,σI,j ∈ RFsyn×Fsyn are
the associated covariance matrixes, and Fsyn = 500 is the
feature dimensions. Then, we connect nodes with proba-
bility PE if they are from the same class (the task-relevant
condition), with probability PI if they share different labels
but posses implicit attributes from the same distribution
(the task-irrelevant condition). For all other cases, we con-
nect nodes with probability q in a small value, 1e−5 in
this work for ensuring a connected graph. Since no class-
imbalance problem exists here, the homophily ratios of our
generated graphs are measured using index H. Intuitively,
we could anticipate heterophilic connecting pattern when
setting PE ≪ PI, and strong homophily otherwise. Quanti-
tatively, the relationship between the homophily ratio Hsyn
and parameters PE, PI can be derived with the simple
knowledge on combinatorics and statistics while omitting
the small value of q: Hsyn(PE, PI) =

3(Nsyn−3)

3(Nsyn−3)+2Nsyn
PI
PE

, with

Nsyn being the total number of nodes. Clearly, we have
Hsyn → 0 while PI ≫ PE, and Hsyn → 1 while PI ≪ PE.
To avoid possible computational overhead, we also need to
control the average node degree of our synthetic graphs.
Similarly, we can approximately derive it as the function of
PI and PE: T (PE, PI) =

Nsyn−3

3 PE +
4Nsyn

9 PI. Give this, we
have that Hsyn(·) is a function of the fraction between PE
and PI with fixed n, and T (·) is linearly correlated with PE
and PI. As such, given fixed PE and PI attaining certain
Hsyn, we can almost attain the average node degree in
any values with a scaling parameter ω, i.e., average degree
= ω · T (PE, PI) = T (ω · PE, ω · PI) without changing Hsyn.
In this work, we tune all these parameters such that the
average degree is around 20, and list the experimented
values in Table 3.

6.1.3 Data Splitting
For heterophilic graphs and our synthetic graphs, we di-
vides each dataset into 60%/20%/20% corresponding to
training/validation/testing to follow [10], [11], [44]. For ho-
mophilic graphs, we adopt the popular sparse splitting [6],
[26], [30], i.e., 20 nodes per class, 500 nodes, and 1,000
nodes to train, validate, and test models. For each dataset,
10 random splits are created for evaluation.

6.1.4 Baselines
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TABLE 4
Node classification accuracies (%) over 100 runs. Error Reduction gives the average improvement of ES-GNN upon baselines w/o Basic GNNs.

Datasets Heterophilic Graphs Homophilic Graphs

Squirrel Chameleon Wisconsin Cornell Texas Twitch-DE Actor Cora Citeseer Pubmed Polblogs

GCN [30] 55.2±1.5 67.6±2.0 59.5±3.6 52.8±6.0 61.7±3.7 74.0±1.2 31.2±1.3 79.7±1.2 69.5±1.7 78.7±1.6 89.4±0.9
SGC [6] 50.7±1.3 61.9±2.6 53.7±3.9 51.2±0.9 51.4±2.2 73.9±1.3 30.9±0.6 79.1±1.0 69.9±2.0 76.6±1.3 89.0±1.5
GAT [26] 54.8±2.2 67.3±2.2 57.9±4.5 50.4±5.9 55.4±5.9 73.7±1.3 30.5±1.2 82.0±1.1 69.9±1.7 78.6±2.0 87.4±1.1

NeuralSparse [48] 40.0±1.6 60.5±2.0 70.8±3.4 64.1±5.5 66.4±5.7 71.3±1.3 35.5±1.1 78.5±1.4 69.7±1.8 79.1±1.2 89.3±0.9
GCN-LPA [49] 54.2±1.1 63.4±1.9 63.3±3.7 65.6±7.3 61.2±7.6 74.0±1.2 37.8±0.9 80.4±1.5 69.7±1.7 79.7±1.3 89.7±0.8

DisenGCN [65] 42.4±1.6 58.4±2.3 78.1±4.0 77.4±4.4 71.3±5.7 73.5±1.7 36.7±1.2 81.5±1.3 69.2±1.7 80.0±1.6 89.5±0.9
FactorGCN [33] 56.6±2.4 69.8±2.0 64.2±4.8 50.6±1.8 69.5±6.5 73.1±1.4 29.0±1.4 75.2±1.6 61.6±2.0 72.9±2.3 87.9±1.7
VEPM [70] 50.3±1.7 67.3±2.1 55.6±4.9 51.2±7.0 55.8±4.3 73.3±1.2 29.3±1.1 82.2±1.2 69.1±1.9 78.8±1.6 89.5±0.9
DisGNN [71] 55.1±4.8 68.2±1.9 54.6±5.4 52.0±5.7 60.6±3.9 69.2±0.8 30.2±1.3 78.2±1.4 66.2±2.2 77.6±1.7 89.6±0.9

GEN [13] 36.0±4.0 57.6±3.1 83.3±3.6 81.0±3.9 78.3±8.0 74.1±1.4 37.3±1.4 79.8±1.3 69.7±1.6 78.9±1.7 89.6±1.4
WRGAT [14] 39.6±1.4 57.7±1.6 82.9±4.5 79.2±3.5 80.5±6.1 70.0±1.3 38.6±1.1 71.7±1.5 64.1±1.9 73.3±2.1 88.2±1.2
H2GCN [10] 45.1±1.9 62.9±1.9 82.6±4.0 79.6±4.9 79.8±7.3 73.1±1.5 38.4±1.0 81.4±1.4 68.7±2.0 78.0±2.0 89.0±1.0
FAGCN [18] 50.4±2.6 68.9±1.8 82.3±4.4 79.4±5.5 80.3±5.5 74.1±1.4 37.9±1.0 82.6±1.3 70.3±1.6 80.0±1.7 89.3±1.1
GPR-GNN [11] 54.1±1.6 69.6±1.7 82.7±4.1 79.9±5.3 81.7±4.9 74.0±1.6 38.0±1.1 81.5±1.5 69.6±1.7 79.8±1.3 89.5±0.8
GloGNN++ [23] 63.3±1.2 71.4±2.0 84.9±4.2 82.0±3.5 81.4±5.6 72.8±1.1 38.2±1.2 80.9±1.4 70.5±1.9 76.8±2.1 89.6±0.8
ACM-GCN [46] 67.0±1.3 75.3±2.2 84.3±4.5 82.1±4.9 82.2±5.9 74.2±0.9 36.6±1.0 81.3±1.0 69.4±1.7 79.5±1.4 89.6±0.9
GOAL [47] 57.9±0.9 71.3±2.0 70.5±5.1 54.9±6.6 72.0±7.4 68.5±1.5 36.3±1.0 80.6±1.4 69.7±2.0 78.7±1.3 88.7±1.6

ES-GNN (ours) 62.4±1.4 72.3±2.1 85.3±4.6 82.2±4.0 82.3±5.7 74.7±1.1 38.9±0.8 83.0±1.1 70.7±1.7 80.7±1.4 89.7±0.9
Error Reduction 11.5% 6.4% 11.0% 11.7% 9.4% 2.2% 3.2% 3.3% 2.3% 2.6% 0.5%

We compare our ES-GNN with 17 baseline models, catego-
rized into four groups: (1) Basic GNNs: GCN [30], SGC [6],
and GAT [26]; (2) GNNs prioritizing task-relevance:, Neu-
ralSparse [48], and GCN-LPA [49]; (3) GNNs disentangling
graphs: DisenGCN [65], FactorGCN [33], DisGNN [71], and
VEPM [70]; (4) GNNs tailored for heterophily: GEN [13],
WRGAT [14], H2GCN [10], FAGCN [18], GPR-GNN [11],
GloGNN++ [23], ACM-GCN [46], and GOAL [47].

6.1.5 Implementation Details
For all the baselines and our model, we set d = 64
as the number of hidden states for fair comparison, and
tune the hyper-parameters on the validation split of each
dataset using Optuna [99] for 200 trials. With the best
hyper-parameters, we train models in 1,000 epochs using
the early-stopping strategy with a patience of 100 epochs.
We then report the models’ average performance across
10 runs on the test set for each of the 10 random splits,
leading to a total of 100 runs. For reproducibility, we pro-
vide the searching space of our hyper-parameters: learn-
ing rate ∼ [1e−2, 1e−1], weight decay ∼ [1e−6, 1e−3],
dropout ∼ {0, 0.1, ..., 0.8} with step 0.1, the number of
layers K ∼ {1, 2, ..., 8} with step 1, scaling parameter
ϵR, ϵIR ∼ {0.1, 0.2, ..., 1} with step 0.1, and irrelevant
consistency coefficient λICR ∼ [0, 1] for Cora, Citeseer,
Pubmed, and Twitch-DE, [5e−8, 5e−6] for Chameleon, Wis-
consin, Cornell, and Texas, [5e−5, 5e−3] for Squirrel, and
[5e−3, 5e−2] for Actor. Our implementation can be found at
https://github.com/jingweio/ES-GNN.

6.2 Results on Real-World Graphs
Table 4 summaries node classification accuracies on real-
world datasets over 100 runs with multiple random splits
and various model initializations. Generally, our ES-GNN
outperforms competitors on most datasets, except for rank-
ing third on Squirrel and second on Chameleon against a
wide array of baseline models. In particular, compared to

both GNNs specializing in task-relevance, graph disentan-
glement, and heterophily, our method achieves an average
improvements of 11.5%, 6.4%, 11.0%, 11.7%, and 9.4% on
heterophilic graphs like Squirrel, Chameleon, Wisconsin,
Cornell, and Texas, respectively. On the Twitch-DE and Ac-
tor datasets, ES-GNN leads by a smaller margin, with an av-
erage increase of 2.7%. In strong homophilic settings, where
the majority of edges are intra-class links – essential for
node classification – ES-GNN not only capitalizes on these
connections but also effectively mitigates the potential noise
propagation caused by a small number of inter-class edges.
This capability ensures that ES-GNN remains competitive,
demonstrating an average performance advantage of 2.2%
on the Cora, Citeseer, Pubmed, and Polblogs datasets. In
this homophily context, we will further demonstrate the
remarkable robustness of ES-GNN in case of perturbation
or noisy links in Section 6.6.

6.3 Results on Synthetic Graphs
We examine the learning ability of various models on graphs
across the homophily or heterophily spectrum. From Fig. 5,
we have the following observations: 1) Looking through
the overall trend, we obtain a “U” pattern on graphs from
the lowest to the highest homophily ratios. That suggests
GNNs’ prediction performance is not monotonically cor-
related with graph homophily levels in a strict manner.
When it comes to the extreme heterophilic scenario, GNNs
tend to alternate node features completely between different
classes, thereby still making nodes distinguishable w.r.t.
their labels, which coincides with the findings in [100].
2) Despite the attention mechanism for adaptively utilizing
relevant neighborhood information, GAT turns out to be
the least robust method to arbitrary graphs. The entangled
information in the mixed assortativity and disassortativity
provides weak supervision signals for learning the attention
weights. FactorGCN employs a graph factorization to disen-
tangle different graph aspects but still adopts all of them for
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(a) Chameleon (b) Cora (c) Hsyn = 0.1 (d) Hsyn = 0.5 (e) Hsyn = 0.9

Fig. 4. Feature correlation analysis. Two distinct patterns (task-relevant and task-irrelevant topologies) can be learned on Chameleon with H = 0.23,
while almost all information is retained in the task-relevant channel (0-31) on Cora with H = 0.81. On synthetic graphs in (c), (d), and (e), block-
wise pattern in the task-irrelevant channel (32-63) is gradually attenuated with the incremental homophily ratios across 0.1, 0.5, and 0.9. ES-GNN
presents one general framework which can be adaptive for both heterophilic and homophilic graphs.
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Fig. 5. Results of different models on synthetic graphs with varied ho-
mophily ratios, where ES-GNN constantly outperform all the baselines.

prediction without judgement, thereby performing poorly
especially on the tough cases of Hsyn = 0.3, 0.4, and 0.5.
3) Both FAGCN and GPR-GNN model the dissimilarity
between nearby nodes to go beyond the smoothness as-
sumption in conventional GNNs, and display some superi-
ority under heterophily. However, the correlation between
graph edges and classification tasks is not explicitly de-
fined and emphasized in their designs. In other words, the
classification-harmful information still could be preserved
in their node dissimilarity. Experimental results also show
that these methods are constantly beaten by our disen-
tangled approach. 4) The proposed ES-GNN consistently
outperforms, or matches, others across different graphs
with different homophily levels, especially in the hardest
case with Hsyn = 0.3 where some baselines even perform
worse than MLP. This is mainly because our ES-GNN is
able to distinguish between task-relevant and irrelevant
graph links, and makes prediction with the most correlated
features only. We further provide detailed analyses in the
following sections.

6.4 Correlation Analysis
To better understand our proposed method, we investigate
the disentangled features on Chameleon, Cora, and three
synthetic graphs as typical examples in Fig. 4. Clearly, on
the strong heterophilic graph Chameleon with H = 0.23,
correlation analysis of learned latent features displays two
clear block-wise patterns, each of which represents task-
relevant or task-irrelevant aspect respectively. In contrast,
on the citation network Cora with H = 0.81, the node

TABLE 5
Edge Analysis of our ES-GNN on synthetic graphs with various
homophily ratios. “Removed Het.” gives the percentage (%) of
heterophilic (inter-class) node connections excluded from the

task-relevant topology and disentangled in the task-irrelevant topology.
The last two rows list the corresponding node classification accuracies

(%) of ES-GNN and its variant while ablating ES-layer.

Hsyn 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Avg.

Removed Het. 41.9 53.2 60.8 70.4 74.2 80.7 86.7 87.8 89.9 71.7

ES-GNN 90.0 69.6 62.1 69.6 85.4 93.8 98.3 99.2 100.0 85.3
ES-GNN w/o ES 84.6 57.9 53.3 53.8 74.2 81.7 86.3 90.4 96.7 75.4

connections are in line with the classification task, since
scientific papers mostly cite or are cited by others in the
same research topic. Thus, most information will be retained
in the task-relevant topology, while very minor information
could be disentangled in the task-irrelevant topology (see
Fig. 4b). On the other hand, the results on synthetic graphs
from Fig. 4c to 4e display an attenuating trend on the second
block-wise pattern with the incremental homophily ratios
across 0.1, 0.5, and 0.9. This correlation analysis empirically
verifies that our ES-GNN successfully disentangles the task-
relevant and irrelevant features, and also demonstrates its
universal adaptivity on different types of networks.

6.5 Edge Analysis

We analyze the split edges from our ES-layer using syn-
thetic graphs as an example in this section. According to
Section 6.1.2, the synthetic edges are defined as the task-
relevant connections if they link nodes from the same
class, and the task-irrelevant ones otherwise. Therefore, we
calculate the percentages of heterophilic node connections,
which are excluded from our task-relevant topology and
disentangled in the task-irrelevant one, so as to investigate
the discerning ability of ES-GNN between edges in different
types. As can be observed in Table 5, 71.7% task-irrelevant
edges are identified on average across various homophily
ratios. On the other hand, we also report the classification
accuracies of ES-GNN and its variant while ablating ES-
layer, from which approximately 10% degradation can be
observed. All of these strongly validate the effectiveness
of our ES-layer and reasonably interprets the good perfor-
mance of ES-GNN.
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Fig. 6. Results of different models on perturbed homophilic graphs. ES-GNN is able to identify the falsely injected (the task-irrelevant) graph edges,
and exclude these connections from the final predictive learning, thereby displaying relative robust performance against adversarial edge attacks.

6.6 Robustness Analysis

By splitting the original graph edge set into task-relevant
and task-irrelevant subsets, our proposed ES-GNN enjoys
strong robustness particularly on homophilic graphs, since
perturbed or noisy aspects of nodes could be purified from
the task-relevant topology and disentangled in the task-
irrelevant topology. To examine this, we randomly inject
fake edges into graphs with perturbed rates from 0% to
100% with a step size of 20%. Adversarially perturbed
examples are generated from graphs with strong homophily,
such as Cora, Citseer, Pubmed, and Polblogs. As shown in
Fig. 6, models considering graphs beyond homophily, i.e.,
H2GCN, FAGCN, GPR-GNN, and our model, consistently
display a more robust behavior than GCN and GAT. That
is mainly because fake edges may connect nodes across dif-
ferent labels, and consequently cause erroneous information
sharing in the conventional methods.

On the other hand, our ES-GNN beats all the baselines
by an average margin of 2% to 3% on Citeseer, Pubmed,
and Polblogs while displaying relatively the same results
on Cora. We attribute this to the capability of our model
in associating node connections with learning tasks. Take
Pubmed dataset as an example. We investigate the learned
task-relevant topologies and find that 81.0%, 73.0%, 82.1%,
83.0%, 82.6% fake links get removed on adversatial graphs
with perturbation rates from 20% to 100%. This also offers
evidences supporting that our ES-layer is able to distinguish
between task-relevant and irrelevant node connections.
Therefore, despite a large number of false edge injections,
the proximity information of nodes can still be reasonably
mined in our model to predict their labels. Importantly,
these empirical results also indicate that ES-GNN can still
identify most of the task-irrelevant edges though no clear
similarity or association between the connected nodes exists
in the adversarial setting.

6.7 Alleviating Over-smoothing Problem

In order to verify whether ES-GNN alleviates the over-
smoothing problem, we compare it with GCN and GAT
by varying the layer number in Fig. 7. It can be observed
that these two baselines attain their highest results when
the number of layers reaches around two. As the layer goes
deeper, the accuracies of both GCN and GAT gradually drop
to a lower point. On the contrary, our ES-GNN presents a
stable curve. In spite of starting from a relative lower point,
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Fig. 7. Classification accuracy vs. model depths.

the performance of ES-GNN keeps improving as the model
depths increase, and eventually outperforms both GCN and
GAT. The main reason is that, our ES-GNN can adaptively
utilize proper graph edges in different layers to attain the
task-optimal results with enlarged receptive fields. In other
words, once an edge stops passing useful information or
starts passing harmful messages, ES-GNN tends to identify
it and remove it from learning the task-correlated represen-
tations, thereby having the ability of mitigating the over-
smoothing problem.

6.8 Channel Analysis and Ablation Study

In this section, we compare ES-GNN with its variant ES-
GNN-d which takes dual (both the task-relevant and ir-
relevant) channels for prediction, and perform an abla-
tion study. Fig. 8 provides comparison on eight real-world
datasets as examples. Here, we first specify some annota-
tions including 1) “w/o ICR”: without regularization loss
LICR, and 2) “w/o ES”: without edge splitting (ES-) layer.
Overall, two conclusions can be drawn from Fig. 8. First, ES-
GNN is consistently better than ES-GNN-d, implying that
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Fig. 8. Ablation study of ES-GNN on eight datasets in node classification.
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Fig. 9. Sensitivity analysis of coefficient λICR.

the task-irrelevant channels indeed capture some false infor-
mation where model performance downgrades even with
the doubled feature dimensions. Second, removing either
ICR or ES-layer from both ES-GNN and ES-GNN-d leads to
a clear accuracy drop. That validates the effectiveness of our
model designs.

6.9 Sensitivity Analysis of Coefficient λICR

We test the effect of the irrelevant consistency coefficient
λICR, and plot the learning performance of our model on
eight real-world datasets as examples in Fig. 9 by varying
λICR with different values. For example, the classification
accuracy on Squirrel in Fig. 9a goes up first and then grad-
ually drops. Promising results can be attained by choosing
λICR from [5e−5, 5e−3]. Similar trends can be also observed
on the other datasets, where λICR is relatively robust within
a wide albeit distinct interval.

7 CONCLUSION

In this paper, we develop a novel graph learning framework
that enables GNNs to go beyond the strong homophily
assumption on graphs. We manage to establish a correlation
between node connections and learning tasks through a
plausible hypothesis, from which ES-GNN is derived with
interpretable edge splitting. Our ES-GNN essentially par-
titions the original graph structure into task-relevant and
irrelevant topologies as guide to disentangle node features,

whereby the classification-harmful information can be dis-
entangled and excluded from the final prediction target.
Theoretical analysis illustrates our motivation and offers
interpretations on the expressive power of ES-GNN on dif-
ferent types of networks. To provide empirical verification,
we conduct extensive experiments over 11 benchmark and
1 synthetic datasets. The node classification results demon-
strate the overall superior performance of our ES-GNN
compared to 15 competitive baselines, which specialize in
task-relevance, graph disentanglement and heterophily. In
particular, we also conduct analysis on the split edges,
correlation among disentangled features, model robustness,
and the ablated variants. All of these results demonstrate
the success of ES-GNN in identifying graph edges between
different types, which also validates the effectiveness of our
interpretable edge splitting. In future work, we will further
explore more sophisticated designs in the edge splitting
layer. Another promising direction would be how to extend
our learning paradigm in accomplishing graph-level tasks.
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