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Learning Disentangled Graph Convolutional
Networks Locally and Globally

Jingwei Guo, Kaizhu Huang*, Xinping Yi, and Rui Zhang

Abstract—Graph Convolutional Networks (GCNs) emerge as
the most successful learning models for graph-structured data.
Despite their success, existing GCNs usually ignore the entangled
latent factors typically arising in real-world graphs, which results
in non-explainable node representations. Even worse, while the
emphasis has been placed on local graph information, the global
knowledge of the entire graph is lost to certain extent. In this
work, to address these issues, we propose a novel framework for
GCNs, termed as LGD-GCN, taking advantage of both local and
global information for disentangling node representations in the
latent space. Specifically, we propose to represent a disentangled
latent continuous space with a statistical mixture model, by lever-
aging neighborhood routing mechanism locally. From the latent
space, various new graphs can then be disentangled and learned,
to overall reflect the hidden structures with respect to different
factors. On one hand, a novel regularizer is designed to encourage
inter-factor diversity for model expressivity in the latent space. On
the other hand, the factor-specific information is encoded globally
via employing a message passing along these new graphs, so as to
strengthen intra-factor consistency. Extensive evaluations on both
synthetic and five benchmark data sets show that LGD-GCN
brings significant performance gains over the recent competitive
models in both disentangling and node classification. Particularly,
LGD-GCN is able to outperform averagely the disentangled state-
of-the-arts by 7.4% on social network data sets. Code is available
at https://github.com/jingweio/LGD-GCN.

Index Terms—Graph Convolutional Networks, Disentangled
Representation Learning, Local and Global Learning, (Semi-
)Supervised Node Classification

I. INTRODUCTION

GRAPHS are emerging as an insightful structured mod-
eling technique for capturing the similarity between

data samples and identifying the relationship between enti-
ties [1]–[5]. To mine the domain-specific knowledge in graph-
structured data, Graph Convolutional Networks (GCNs) were
proposed to integrate topological patterns and content features
for node classification [6]. In the past years, GCNs have
demonstrated excellent expressive power that leads to growing
popularity in various graph learning tasks, such as node
classification, link prediction, and recommendation [7]–[9].
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(a) DisenGCN (Local Approach) (b) LGD-GCN (Ours)

Fig. 1: Visualization of the disentangled latent units w.r.t. four latent
factors on a synthetic graph. Several works have been made towards graph
disentanglement learning, e.g. DisenGCN [17] and IPGDN [18]. They are
all heavily relying on the local graph information, and here we only take
DisenGCN, the basic one, as an example for intuitive comparison. Points
with a different color indicate the disentangled latent units (for all nodes)
of a different latent factor. In sharp contrast to DisenGCN, our LGD-GCN
displays a highly disentangled pattern with strong inter-factor diversity and
intra-factor consistency; it indicates high (low) correlations between intra-
factor (inter-factor) features.

Notably, most existing GCN models in the literature [6],
[10]–[13] focus on exploiting the local graph information
and take a holistic approach, i.e., they interpret the node
neighborhood as a perceptual whole while ignoring the within-
distinctions. Yet a real-world graph typically contains hetero-
geneous node relations, driven by the entanglement of many
latent factors. For example, a user in a social network usually
links with others for various reasons, such as family, work,
and/or hobby, which typically stores partial information in
different types. The holistic approaches fail to capture the
expressive partial information due to the neglect of the un-
derlying factors, thereby rendering the learned representations
heavily-entangled and less informative. On the other hand,
while the benefits of modeling data both locally and globally
have been well demonstrated in various machine learning
models [14], there are few variants of GCNs (e.g., [15], [16])
incorporating both local and global graph information.

Recently, several works [17]–[21] make attempts to dis-
entangle the latent factors behind graph data through neigh-
borhood partition. Despite the novel design, they mostly rely
on local node neighborhood only, similarly to most GCNs,
which may bring unexpected issues. First, the information
from local ranges can be significantly varied across the entire
graph. Solely depending on it, they could easily produce latent
representations that loses consensus cluster centroids with
respect to different factors. This consequently may weaken the
intra-factor correlation and inter-factor separability between
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disentangled features, therefore leading to a diminished inter-
pretability. Second, the local neighborhood information can be
scarce and limited especially in sparse graphs, which prohibits
models from learning informative node aspects and yielding
favourable performance boost. A detailed discussion will be
given later on Section II-C.

In this work, to address above issues, we propose a novel
Local and Global Disentanglement for Graph Convolutional
Networks (LGD-GCN). The core idea is that we learn dis-
entangled node representations by mining both local and
global graph information. In particular, we first present a local
disentanglement on nodes by partitioning their observable
neighbors with the neighborhood routing mechanism. Then,
the global information is attained by modeling the overall
densities of nodes while considering different factors, and
further disclosing the hidden node relations from different
angles.

To this end, a statistical mixture modeling is performed
on disentangled latent units to derive a latent continuous
space. This enables a different density covering all the nodes,
specific to a latent factor, in a different subspace [22], [23].
Accordingly, a novel regularizer is developed for promoting
inter-factor diversity. It encourages the separability between
these latent units according to different factors, and captures
the uncorrelated information. After that, we manage to build a
different new graph with sparse property by only connecting
nearby neighbors within a different spatial region. These
new graphs overall reflect the underlying data structures, i.e.,
the hidden node relations, in different aspects. Employing a
message passing scheme over them can efficiently encode the
global information specific to different factors. This further
strengthens intra-factor consistency, i.e., the correlation be-
tween disentangled features w.r.t. the same factor. Therefore,
the disentangled informativeness of model can be enhanced in
the output space. In sharp contrast to the local approach for
graph disentanglement, Fig. 1 clearly visualizes the benefit of
learning disentangled node representations both locally and
globally.

In a nutshell, our contributions are summarized as below:
• We show through empirical analysis that the existing dis-

entangled approaches may produce latent representations
with weakly disentangled factors when solely relying on
the local graph information. Therefore, the performance
gain of these disentangled approaches becomes marginal
when it comes to sparse graphs.

• To overcome the above limitations, we propose a novel
framework for Graph Convolutional Networks (LGD-
GCN) to disentangle the latent factors underlying the
graph data in a more effective way. Specifically, by lever-
aging neighborhood routing locally and message passing
globally, LGD-GCN can disentangle node representations
with promoted inter-factor diversity and strengthened
intra-factor consistency.

• Extensive evaluations on synthetic and five real-world
data sets show the superiority of the proposed LGD-GCN
over the state-of-the-arts both quantitatively and quali-
tatively. Specifically, LGD-GCN averagely outperforms
the disentangled state-of-the-arts by 7.5%, 7.2%, 1.7%,

Fig. 2: Relative improvements of DisenGCN upon GCN while varying the
average neighborhood sizes of the graph synthesized with four latent factors.
It can be observed that the boost performance of DisenGCN is becoming
minor as the average neighborhood sizes decreasing.

2.3%, and 1.6% on Blogcatalog, Flickr, Cora, Citeseer,
and Pubmed data sets, respectively.

II. BACKGROUND AND MOTIVATION

A. Graph Convolutional Networks

Graph convolutional networks (GCNs) are powerful ma-
chine learning models in tackling analytical tasks on graph-
structured data [7]. Let G = (V, E) denote a graph with node
set V and edge set E. Given two distinct nodes 8, 9 ∈ V,
we define (8, 9) ∈ E if nodes 8 and 9 are connected by an
edge, and the neighborhood of node 8 as #8 = { 9 | (8, 9) ∈ E}.
For attributed graphs, nodes are associated with a raw feature
matrix H ∈ R |V |× 5 with the transpose of each raw being the
initial features h8 ∈ R 5 for each node 8, where 5 is the number
of raw features per node. In the past years, an increasing
number of GCN variants have been developed, which can
be divided into two categories including spectral-based [6],
[24], [25] and spatial-based [10], [11], [26]–[28] methods.
Most of them can be generalized with a message passing
framework [29], where node attributes are exchanged locally
through the edges followed by a neighborhood aggregation:

h
′
8 ← COMBINE(h8 ,AGGREGATE({h 9 |∀ 9 ∈ #8})).

The features of neighbors are first aggregated together, and
then passed to the center node to update its hidden states
h8 through combination. Albeit promising in several learning
tasks, most GCNs focus on modeling local neighborhood
only, and treat them as a perceptual whole. Consequently, the
learned node representations usually lose the global knowledge
of the entire graph and tends to be non-explainable.

B. Disentangled Node Representation Learning

Disentangled representation learning aims to reveal the
explanatory latent variables behind data for generating a
meaningful representation to admit intuitive explanations [30],
[31]. Massive works have been developed on that topic [32]–
[36]. It has been proved that disentangled representation is less
susceptible to complex variants and more robust to adversarial
attacks [30], [37]. However, most works are only applicable
to Euclidean data structure. Recently, DisenGCN [17] made
the first attempt towards disentangled node representation
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Fig. 3: Illustration of our LGD-GCN layer with " = 3 latent factors, where A and H denote the adjacency matrix and feature matrix of the input graph,
respectively. First, the node representations are locally disentangled by leveraging the neighborhood routing mechanism. These disentangled representations are
then modeled in a latent continuous space, promoted with inter-factor diversity, from which various new graphs are built for further aggregation to strengthen
intra-factor consistency.

learning. Since then, works [18]–[21] extending it start to
emerge in the field of graph learning.

DisenGCN [17] hypothesizes that nodes on the graph are
connected mainly due to different kinds of relationship caused
by different factors < (< = 1, 2, ..., "). It aims to identify
these latent factors so as to learn disentangled node repre-
sentations. Specifically, the node features, {h8 ∈ R 5 |∀8 ∈ +},
are first projected onto " subspaces in different channels. In
each channel <, the hidden states z8,< ∈ R

3
" for each node 8

is given by

z8,< =
f(W)

< h8 + b<)
‖f(W)

< h8 + b<)‖2
(1)

where W< ∈ R 5 × 3" and b< ∈ R 3
" are learnable pa-

rameters, and f is an activation function. Then, DisenGCN
employs a neighborhood routing mechanism [17, Algorithm-
1] (denoted as NRM in this article) to partition each node
neighborhood into " clusters, from which the information is
aggregated independently to produce disentangled latent units,
e.g., {ẑ8,1, ẑ8,2, ..., ẑ8," } for node 8, describing different node
aspects. Finally, the disentangled node representation, ĥ8 ∈ R3 ,
can be attained by vector column concatenation:

ĥ8 = ẑ8,1 ⊕ ẑ8,2 ⊕ ... ⊕ ẑ8," . (2)

C. Limitations of Current Disentangled Approaches

While the current disentangled state-of-the-arts reveal cer-
tain latent factors and demonstrate good performance in many
scenarios [19]–[21], we argue that they are prone to pro-
duce weakly disentangled representations, and yield limited
performance boost because of their heavy reliance on local
graph information. To illustrate, we conduct two empirical
investigations over a graph synthesized with four latent factors
(see details in Section IV-A2 for data generation). For simpli-
fication, we only take DisenGCN [17] as an example, because
the other disentangled state-of-the-arts are mainly built on it.

First, we visualize the disentangled latent units of Disen-
GCN using t-SNE [38] in Fig. 1a. At the micro-level, we
can observe the separability between points with different

colors in some regions. When it comes to the macro-level,
all points unexpectedly fall into discrete clusters and mixed
together, indicating a weak disentanglement. As DisenGCN
generates disentangled latent units that preserve some specific
micro-meanings of the factor but lose the consistent macro-
meaning (intra-factor consistency), this limits its potential in
attaining higher performance. Additionally, DisenGCN only
considers disentangling representations in different channels
without ensuring their diversity w.r.t. different factors (inter-
factor diversity). The learned representations are thus prone to
preserve redundant information, as illustrated in Fig. 1a.

Second, we further augment the synthetic graph by tuning
the ? value (which controls the density of the synthetic graph
as described in Section IV-A2) to generate graphs with differ-
ent average neighborhood sizes. We then train GCN [6], the
typical holistic approach, and DisenGCN for multi-label clas-
sification, and plot the relative improvements of DisenGCN
upon GCN in Fig. 2. From the figure, the improvements drop
from approximately 5% to 0% as the average neighborhood
size decreasing from 40 to 3. The results are consistent with
the theoretical analysis in that DisenGCN relies on the local
information only. When the graph is sparse (with limited local
information), DisenGCN is inevitably getting less effective.

D. Graph Structure Learning

Structure information plays a key role in graph learning and
GCNs. Unfortunately, real-world data are typically noisy and
incomplete and hence tend to generate imperfect or even poor
graph structures [39]. To address this issue, many researchers
try to remove noisy edges and infer the hidden relations
between nodes so that an appropriate graph structure can be
better learned [40]. These studies can generally be divided
into two categories. The first one takes the approach of metric
learning. It aims to learn a metric to decide whether two
nodes are connected or not based on their features, and update
the original structure with the new one by, e.g., interpolation.
Representative ideas include [41]–[44]. The other one assumes
that graphs are generated by sampling edges from a certain
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distribution [45]–[47]. These works focus on probabilistic
modeling and train graph neural networks with the sampled
graphs. Our work focuses on inferring the underlying node
relations in the disentangled feature space, thereby falling into
the group of metric learning. Another work related to ours
is FactorGCN [48], which factorizes a graph into multiple
subgraphs by edge clipping, and uses them to learn graph-level
representation from different angles. Different from it, our
approach generates multiple new graphs from a latent space,
and employs a message passing along them to characterize
nodes in different aspects.

III. LOCAL AND GLOBAL DISENTANGLEMENT

We present a novel framework for Graph Convolutinal Net-
works, termed LGD-GCN, to learn disentangled node repre-
sentations both locally and globally, as presented in Fig. 3. By
leveraging the neighborhood routing mechanism [17] firstly,
we attain disentangled latent units preserving local graph
information w.r.t. different factors. Then, we propose to further
incorporate global graph information. To this end, our LGD-
GCN discloses the underling factor-aware relations between
nodes, and utilize them to learn better disentangled represen-
tations with promoted inter-factor diversity and strengthened
intra-factor consistency. All the details are illustrated in the
following subsections with notations defined in Table I for
easily reading.

A. Modeling Latent Continuous Space
We assume that the disentangled latent unit ẑ follows a

Gaussian mixture distribution expressed as:

?(ẑ) =
"∑
<=1

@(<)N (ẑ; -<,�<),

where -< ∈ R
3
" and �< ∈ R

3
"
× 3
" are the mean and

covariance associated with factor < in latent space, and @(<)
is the prior probability of factor < and set as 1

"
for equal

consideration. To employ this assumption for space modeling,
we maximize the conditional likelihood of disentangled latent
units given their associated factor, i.e., ?(ẑ8,< |<) for each node
8 and factor <. It turns out to be equivalent to minimizing the
negative log term with removing constants:

LB?024
8,<

= (ẑ8,< − -<)) �−1
< (ẑ8,< − -<). (3)

Its functionality is quite similar to some supervised embedding
methods [23], [49]–[53] that collapse categories into a low-
dimensional embedding with the reduced within-class pair-
wise distance. Instead of constraining pairwise samples, we
introduce Mahalanobis Distance [54] between each latent unit
ẑ8,< and its globally inferred center -<. Accordingly, a latent
continuous space can be derived with a more compact data
(sub-)manifolds, where the latent units are encouraged to be
more discriminative with respect to their factor density.

Finally, the regularization for space modeling is given by
averaging over nodes and factors:

LB?024 =
1
|+ |"

∑
8∈+

"∑
<=1
LB?024
8,<

. (4)

TABLE I: Common Notations

Notations Descriptions
‖ · ‖2 L2 norm.
P( ·) Pairwise distance.
| · | Cardinality of a set.
⊕ Vector column concatenation.
V The node set.
E The edge set.
VCA= The training node set.
VE0; The validation node set.
VCBC The testing node set.
#8 The neighborhood set of node 8.
5 The dimension of initial node feature vector.
3 The dimension of hidden node feature vector.
� The total number of class.
A ∈ R|+ |×|+ | The initial adjacency matrix.
H ∈ R|+ |× 5 The initial feature matrix.
h8 ∈ R 5 The initial features of node 8.
Y8 ∈ R� The ground truth label of node 8 in one hot encoding.
Y8 ∈ R� The predicted label of node 8 in one hot encoding.
" The total number of assumed factors (channels).
NRM The neighborhood routing mechanism [17, Algorithm-1].
) The number of routing iterations in NRM.
N(; `, Σ) Gaussian distribution with mean ` and covariance Σ.

-< ∈ R
3
" Mean vector given factor <.

�< ∈ R
3
"
× 3
" Covariance matrix given factor <.

z8,< ∈ R
3
" The latent units of node 8 given factor <.

A< ∈ R|V|×|V| The learned adjacency matrix given factor <.
LB?024 The regularizer for space modeling.
L38E The regularizer for promoting factor diversity.
LC The loss for downstream task.
: The density parameter in k-Nearest-Neighbor algorithm.
! The total number of stacked layer.
*A The update rate for {-<, �< |∀< = 1, 2, ..., " }.
_B?024 The regularization coefficient for LB?024 .
_38E The regularization coefficient for L38E .
F
\ (;) The ;Cℎ LGD-GCN’s layer with learnable parameters \ (;) .
LG The module of latent aggregation.

B. Promoting Inter-Factor Diversity

Diversity-promoting learning aims to encourage different
components in latent space models to stay mutually uncorre-
lated and different, and has been widely studied [55], [56]. In
the previous section, we have derived a latent continuous space
by independently modeling the density of each disentangled
factor. However, the approximated distributions with different
factors could still be overlapped [55]. Consequently, the dis-
entangled latent units may preserve redundant information and
lose informativeness. To cope with this problem, we propose
to promote the diversity among different latent factors so as
to capture the uncorrelated information.

Particularly, we define the factor diversity with respect to the
probabilities of a sampled latent unit staying close to different
factor densities. Inspired by Determinant Point Process [57],
we formulate the factor diversity for each node 8 as

F 38E8 = det(L̂)8 L̂8), (5)

where L̂8 = [ L8,1
‖L8,1 ‖2 ,

L8,2
‖L8,2 ‖2 , ...,

L8,"
‖L8," ‖2 ] ∈ R

"×" , and L8,< =
[N (ẑ8,<; -1,�1),N(ẑ8,<; -2,�2), ...,N(ẑ8,<; -" ,�" )]) is
a vector in " dimensions, which contains the conditional
likelihoods of a disentangled latent unit ẑ8,< given " dif-
ferent factors. By the property of Determinant [58], F 38E

8

is equal to the square of the volume spanned by the set
{ L8,1
‖L8,1 ‖2 ,

L8,2
‖L8,2 ‖2 , ...,

L8,"
‖L8," ‖2 }, which offers elegantly an intu-

itive geometric interpretation as shown in Fig. 3. To promote
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Algorithm 1 LGD-GCN’s Layer

Input: {h8 ∈ R38= |∀8 ∈ V}, where 38= = 5 in the first layer
and 38= = 3 in the hidden layer.

Output: {h′
8
∈ R3 |∀8 ∈ V}.

1: for 8 ∈ V do
2: z8,1, z8,2, ..., z8," ← h8 by Eq. (1).
3: end for
4: for 8 ∈ V do
5: // Leverage NRM with ) routing iterations.
6: ẑ8,< ← {z8,<} ∪ {z 9 ,< |∀ 9 ∈ #8},∀< = 1, 2, ..., " .
7: end for
8: // Promoting Inter-factor Diversity.
9: Minimize LB?024 and L38E by Eq. (4) and Eq. (6).

10: // Strengthening Intra-factor Consistency.
11: for < = 1, 2, ..., " do
12: A< ← {ẑ8,< |∀8 ∈ V} by k-Nearest-Neighbors.
13: {ẑ′

8,<
|∀8 ∈ +} ← {ẑ8,< |∀8 ∈ V} with A< by Eq. (7).

14: end for
15: h′

8
← ẑ′

8,1 ⊕ ẑ′
8,2 ⊕ · · · ⊕ ẑ′

8,"
,∀8 ∈ V.

factor diversity, we introduce the diversity promoting regular-
izer as

L38E = −
1
|V|

∑
8∈V

log(F 38E8 ), (6)

with the following proposition.

Proposition 1. Minimizing LB?024 and L38E simultaneously
as L = _B?024LB?024 +_38EL38E encourages the separatabil-
ity between different factor densities, where _B?024 and _38E
are positive regularization constants.

Proof. Penalizing LB?024 in Eq. (4) models the density of
each factor with a latent continuous space, where most latent
units stay close to their centers. In other words, they will
have the largest conditional likelihood according to their
factors, i.e., L8,< = max{L8,1,L8,2, ...,L8," } for ẑ8,<. On the
other hand, as L8,<

‖L8,< ‖2 is normalized, the maximum value of
F 38E
8

is 1 and can only be attained when L8,1,L8,2, ...,L8,"
are orthogonal to each other. Therefore, minimizing L38E in
Eq. (6) further emphasizes the maximal value in vector L8,<
and promotes its discretization, thereby disjointing the possible
overlaps between different factor densities. As a consequence,
the disentangled latent units are encouraged to be separated
spatially with respect to different factors. �

This process can essentially prune the redundancy, enhance
the disentangled informativeness, and finally promote the
inter-factor diversity.

C. Strengthening Intra-factor Consistency

Although node relations can naturally be available in a
graph, we believe that they are imperfect for disentangled
graph learning due to data corruption or missing information.
Take a huge and sparse graph as an example. It is difficult for
most nodes to absorb sufficient information from their small
neighborhood, especially in case of the average neighborhood
size being much less than the number of latent factors to

be disentangled. On the other hand, the original graph is
essentially constructed from the raw feature space of nodes,
and may not contain the desired topology after projecting node
features in different channels for disentangling. To alleviate
this issue, we propose to disclose the hidden relations between
nodes from a latent space, and utilize them to encode more
information, which proves beneficial.

The modeled latent space as described in Section III-A
embeds the disentangled latent units of all the nodes, specific
to a different factor, into a different subspace, from which a
new graph can naturally be constructed by connecting nearby
neighbors. These graphs are expected to reflect the overall
structured information from different angles, and disclose
the hidden node relations w.r.t. different factors. Then, the
disentangled latent units are allowed to propagate on their
latent graphs followed by a neighborhood aggregation. As
such, the factor-specific information can be encoded globally
and selectively for nodes, further strengthening the intra-factor
consistency. Actually, there are many ways to construct the
latent graphs, and we list three popular ones here.

1) k-Nearest-Neighbors [59] (kNN): Two samples 8 and 9

are connected in a kNN graph if either of them belongs to
:-nearest neighbors of the other. Formally, the adjacency
matrix is given as:

AkNN
[8, 9 ] =

{
1 P(8, 9) ≤ P(8, 8: ) or P( 9 , 9: )
0 otherwise

where P(·) denotes pairwise distance, and 8: and 9: are
the kCℎ nearest neighbors of samples 8 and 9 , respectively.

2) Continuous k-Nearest-Neighbors [60] (CkNN): It pro-
vides a less discrete version of kNN in case of modeling
data samples which are not uniformly distributed:

ACkNN
[8, 9 ] =

{
1 P(8, 9) < X

√
P(8, 8: )P( 9 , 9: )

0 otherwise

where X is a scalar parameter controlling the density of
the generated graphs.

3) n-Ball [61]: Two samples 8 and 9 are connected in a n-
Ball graph if their distance is smaller than some scalar
value n :

An -Ball
[8, 9 ] =

{
1 P(8, 9) < n
0 otherwise

.

In this article, we uniformly apply kNN [59] algorithm on
{z8,< |8 ∈ V} with P(·) being Euclidean distance, and attain
a latent graph for each factor < with adjacency matrix A<.
On the other hand, there are also multiple choices on message
passing frameworks from the basic to state-of-the-arts, e.g.,
GCN [6], GAT [11], GIN [62], FAGCN [63], etc., for encoding
information on these latent graphs. In our LGD-GCN, we
found that simply applying the basic GCN-aggregator gives
us satisfactory results and a privilege of low computational
cost. Therefore, the disentangled latent units are updated as
follows:

Ẑ
′
< ← D̂−

1
2

< Â<D̂−
1
2

< Ẑ<, (7)

where Â< = A<+I, D̂< = D<+I, D< is the degree matrix, and
Ẑ< represents the feature matrix with each row being ẑ)

8,<
for
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each node 8 in + . Particularly, we call this proposed module
as Latent Aggregation denoted LG.

Algorithm 2 LGD-GCN’s Optimization Procedure

Params: {(- (;)< ∈ R
3
" ,� (;)< ∈ R

3
"
× 3
" ) |∀< = 1, 2, ..., ",∀; =

1, 2, ..., !} and Θ = {\ (1) , \ (2) , ..., \ (!) }
1: Initialize {(- (;)< ,� (;)< ) |∀< = 1, 2, ..., ",∀; = 1, 2, ..., !}

and Θ with random values.
2: Initialize h(0)

8
with h8 .

3: for number of training epochs do
4: // Forward propagation
5: for ; = 1, 2, ..., ! do
6: {h(;)

8
|∀8 ∈ V} ← F\ (;) ({h

(;−1)
8
|∀8 ∈ V})

7: Calculate L (;)B?024 and L (;)
38E

by Eq. (4) and Eq. (6).
8: end for
9: Calculate LC>C0; with (_B?024, _38E ) by Eq. (8).

10: // Back propagation
11: for ; = 1, 2, ..., ! do
12: Update \ (;) with −∇\ (;)LC>C0; .
13: Update - (;)< ,�

(;)
< ,∀< = 1, 2, ..., ":

14: {h(;)
8
|∀8 ∈ V} ← F\ (;) ({h

(;−1)
8
|∀8 ∈ V})

15: z(;)
8,1 ⊕ z(;)

8,2 ⊕ · · · ⊕ z(;)
8,"
← h(;)

8
,∀8 ∈ V

16: for < = 1, 2, ..., " do
17: -=4F< ← 1

|V |
∑
8∈V z(;)

8,<

18: �=4F< ← 1
|V |

∑
8∈V (z

(;)
8,<
− -=4F< ) (z(;)

8,<
− -=4F< ))

19: - (;)< ← (1 −*A )- (;)< +*A -=4F<

20: � (;)< ← (1 −*A )� (;)< +*A�=4F<

21: end for
22: end for
23: end for

D. Network Architecture

We detail the general network architecture of the proposed
LGD-GCN in this section. The pseudocode of a LGD-GCN’s
layer is presented in Algorithm 1, which can be stacked to
exploit graph data sufficiently. In this work, by appending
one single layer of our model after DisenGCN, we can even
observe significant performance gain as later discussed in
the section of experiments. Specifically, we adopt the ReLU
activation function in Eq. (1) and apply dropout [64] in
the end of each LGD-GCN’s layer, and is only enabled
in training. We can then have the output of layer ; as
{h(;)
8
|∀8 ∈ V} = Dropout(F\ (;) ({h

(;−1)
8
|∀8 ∈ V})), where

1 ≤ ; ≤ !, h(0)
8

is initialized with the raw features h8 , !
denotes the layer number, and F\ (;) refers to LGD-GCN’s
;Cℎ layer. This work focuses on node classification tasks with
the output representations {h(!)

8
∈ R3 |∀8 ∈ V}. We denote

Y8 ∈ R� as the class prediction for node 8, which can then
be calculated as f(W) h(!)

8
+ b) with f being softmax and

sigmoid respectively for single-label (multi-class) and multi-
label node classification, where W ∈ R3×� , b ∈ R� , and
� denotes the number of class. Suppose we have training
set VCA= and the ground truth label set {Y8 ∈ R� |∀8 ∈
VCA=} in one hot encoding. Then, the loss for classification
task LC can be expressed as − 1

|VCA= |
∑VCA=
8
Y)
8

log(Y8) and

TABLE II: DATASET STATISTICS

Datasets Blogcatalog Flickr Cora Citeseer Pubmed
# Nodes 5,196 7,575 2,708 3,327 19,717
# Edegs 171,743 239,738 5,429 4,732 44,338
# Features 8,189 12,047 1,433 3,703 500
# Classes 6 9 7 6 3
# Train 519 757 140 120 60
# Validation 1,039 1,515 500 500 500
# Test 3,638 5,303 1,000 1,000 1,000

− 1
|VCA= |

∑VCA=
8
[Y)
8

log((Y8))+(1−Y8)) log(1−Y8)] for single-
label (multi-class) and multi-label node classification, sepa-
rately. Combing the derived regularization terms in Eq. (4)
and Eq. (6), we have the final optimization objective:

LC>C0; = LC +
!∑
;=1

_ (;) (_B?024L (;)B?024 + _38EL (;)38E ), (8)

where L (;)B?024 and L (;)
38E

are the regularization terms calculated
in ;Cℎ layer, _B?024 and _38E are the corresponding regulariza-
tion coefficients, and _ (;) is taken as 10;−! to grow the impact
of L (;)B?024 and L (;)

38E
as the layer goes deeper within a proper

range.

E. Computational Analysis

In this section, we provide a brief computational analysis on
the proposed LGD-GCN. Compared to DisenGCN in training,
our LGD-GCN additionally needs to compute the means and
covariance matrixes of Gaussian mixtures in Eq. (4). In our
work, instead of learning them with stochastic gradient, we
employ iterative updating with newly computed values from
latent features as detailed in Algorithm 2. This optimization
technique is not unique in our work but has been widely
adopted in multiple research fields [65]–[67]. It not only
enables a lighter computational cost in a low dimensional
latent space, but also provides a stable convergent property as
empirically verified in our experiments. On the other hand, we
have theoretically analyze the time complexity of our model
as O( 5 3 |V|+2|E |3+(|V|+(3−1):) |V|), where the overhead
part compared to DisenGCN is O((|V|+(3−1):) |V|) brought
by the inference of latent graphs. It suggests that the additional
computational cost is mostly influenced by data size, of which
the empirical study is provided in following sections. We argue
that our proposed LGD-GCN is still reasonably efficient in
practice, especially when we consider the significant perfor-
mance gains as verified in our experiments.

IV. EXPERIMENTS

In this section, we show the effectiveness of our LGD-
GCN with experiments on five real-world and one synthetic
data sets in node classification and factor disentanglement.
We also study the convergence behavior and computational
complexity of our model in comparison with DisenGCN.
Finally, parameter sensitivity and module ablation study are
provided.
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TABLE III: MODEL HYPER-PARAMETERS

Datasets Blogcatalog Flickr Cora Citeseer Pubmed
3 64 64 64 64 64
M 16 8 4 4 4
L 1 1 4 4 4
dropout 0.4 0.5 0.05 0.05 0.05
weight decay 0.01 0.04 0.08 0.26 1e−3
learning rate 7e−3 7e−3 0.05 0.03 0.12
*A 0.60 0.88 0.35 0.54 0.69
_B?024 1 0.2 0.88 0.53 0.95
_38E 0.019 0.01 0.033 0.02 4e−4
: 10 9 4 5 13

A. Experimental Setup

1) Real-World Data Sets: Blogcatalog [68] is a community
of online blogging where users are connected by following
each other, labeled by predefined categories of interests, and
given features generated based on their personal descriptions.
Flickr [68] is an multimedia sharing platform, where the
users follow each other online with interest tags and joined
groups respectively being their features and labels. Cora,
Citeseer, and Pubmed [69] are three typically sparse citations
networks whose average neighborhood sizes are 3.9, 2.8, and
4.5, respectively. Their nodes are documents connected by
undirected citations, and assigned with one topic for each as
well as features of bags-of-words. Data statistics are listed in
Table II.

2) Synthetic Data Set: To investigate the behavior of LGD-
GCN on graphs with arbitrary number of latent factors, we also
construct synthetic graphs. In detail, we first generate < Erdős-
Rényi random graphs with 1,000 nodes and 16 classes, where
nodes connect each other with probability ? if they are in
the same class, with probability @ otherwise. Then, we merge
these generated graphs, by summing the adjacency matrix and
turning the element-value bigger than zero to one, to obtain the
final synthetic graphs with < latent factors. There are 16×<
classes, and each node is assigned with < labels according
to the original ones in the < random graphs. The rows of
the adjacency matrix are taken as the node representations.
Following [17], we set @ to 3e−5 and tune ? value such that
the average neighborhood size is around 40.

3) Baselines: We compare our model with a number of
mainstream GCN methods, including the state-of-the-arts, as
the baselines: 1) MoNet [70] makes the first attempt to
generalize convolutional neural networks to non-Euclidean
graph data; 2) GCN [6] approximates graph Laplacian with
Chebyshev expainsion; 3) GraphSAGE [10] is an inductive
framework for large graph learning where we only consider
one of its variant with GCN aggregator; 4) GAT [11] com-
bines the attention mechanism with graph neural networks to
aggregate information with important neighbors; 5) SGC [12]
simplifies GCN by removing nonlinearities; 6) JK-Net [13]
leverage multi-hop neighborhood of nodes to capture structure-
aware information; 7) DisenGCN [17] partitions node neigh-
borhood to learn disentangled node representations; and 8)
IPGDN [18] further extends DisenGCN [17] with promoted
independence between different factors; 9) FactorGCN [48]
employs a graph factorization to disentangle different graph
aspects.

4) Implementation Details: For all the baselines and our
model, we set 3 = 64 as the hidden dimension for fair com-
parison, and tune the hyper-parameters on the validation split
of each data set using Optuna [71] for efficiency. Following
DisenGCN, we set ) = 7 as the number of routing iterations.
For semi-supervised node classification on real-world data
sets, we apply dropout ∼ {0, 0.05, ..., 1} with step 0.05,
learning rate ∼ [1e−3, 5e−1], weight decay ∼ [1e−4, 5e−1],
update rate ∼ [0.1, 0.9] for -< and �<, the number of layers
∼ {1, 2, ..., 10}, the number of channel " ∼ {2, 4, ..., 16} with
step 2, and <b 3

<
c as the hidden dimension in our model when

< is not divisible by 3. For multi-label classification on the
synthetic data set, with a slight difference, we apply learning
rate ∼ [5e−4, 5e−3], and weight decay ∼ [1e−3, 1e−2]. With
the best hyper-parameters, we train models within 1, 000
epochs using the early-stopping strategy with a patience of
100 epochs, and report the average performance in 10 runs on
the test split. For reproducibility, we specify our used hyper-
parameters in Table III, and our implementation can be found
at https://github.com/jingweio/LGD-GCN.

B. Quantitative Evaluation

In this section, we evaluate our model quantitatively in tasks
of semi-supervised node classification and multi-label node
classification.

1) Semi-supervised Node Classification: We consider two
settings of data-split, to avoid the experimental bias as argued
in [72], [73]. One is standard split. For Blogcatalog and Flickr,
we adopt the split from [47] as their standard splits. For Cora,
Citeseer, and Pubmed, we follow the experimental protocal
established by [6], [11]. Another is multiple random splits
for cross validation. For each data set, we uniformly sample
the same number of instances as the standard split and repeat
it in 10 times. Then, the hyper-parameters are only searched
over the standard split, and the average performance in 100
runs is reported with 10 random splits and 10 different model
initializations. The classification accuracies are summarized in
Table IV.

As observed, for social networks, the disentangled ap-
proaches including DisenGCN, IPGDN, and ours outperform
the holistic approaches. This is partially because the users tend
to have multiple different relationships (family, friend, and/or
college) between their neighbors, and learning representations
that recognize and disentangle the underlying factors could
better describe the users from different angles. Although
FactorGCN also considers different types of node relations,
it fails on some networks and even performs worse than
the holistic approaches. One main reason is that FactorGCN
focuses on capturing different graph aspects from a global
view while ignoring the local details important for node-level
classification. On the other hand, our model achieves signif-
icant performance gains upon the disentangled state-of-the-
arts averagely by 7.5% and 7.2% on Blogcatalog and Flickr,
respectively. This demonstrates the benefits brought by further
capturing rich global information. Importantly, the real-world
social networks may be updated quickly, i.e., the users could
frequently follow, or meet new friends. Therefore, the static

https://github.com/jingweio/LGD-GCN
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TABLE IV: SEMI-SUPERVISED CLASSIFICATION ACCURACIES (%) ON THE STANDARD SPLIT (LEFT) AND
MULTIPLE RANDOM SPLITS (RIGHT)

Methods Blogcatalog Flickr Cora Citeseer Pubmed
MoNet [70] 74.7±0.4 74.6±0.5 61.7±0.7 61.6±1.0 79.6±1.5 80.5±1.6 70.2±1.3 67.7±1.7 78.0±0.5 75.7±2.0
GCN [6] 73.8±0.3 72.9±0.4 56.6±0.4 57.6±0.3 81.8±1.0 82.3±1.6 71.8±1.3 70.7±1.3 78.7±0.5 78.5±1.6
GraphSAGE [10] 73.7±0.3 73.0±0.4 56.3±0.4 57.0±0.4 81.9±0.9 81.9±1.6 71.3±1.3 69.2±1.4 79.0±0.6 78.4±1.6
GAT [11] 56.7±5.0 57.5±3.2 45.1±1.0 45.1±1.4 81.9±0.8 81.7±1.4 73.1±0.8 70.9±1.3 78.8±0.7 78.4±1.9
SGC [12] 74.5±0.3 73.7±0.4 61.4±0.2 60.6±0.3 82.4±0.5 82.3±1.7 72.4±0.5 66.0±1.3 79.4±0.2 77.2±2.6
JK-Net [13] 76.5±0.3 75.8±0.5 64.6±0.4 64.1±0.4 82.0±0.9 82.5±1.6 73.0±0.9 70.1±1.2 79.1±0.4 78.2±1.8
DisenGCN [17] 86.5±1.3 86.4±1.2 75.8±0.6 76.7±0.6 81.9±0.9 81.8±1.4 72.5±0.8 70.0±1.3 79.7±0.6 79.0±1.9
IPGDN [18] 86.9±0.9 86.1±1.1 75.9±0.5 76.8±0.6 83.0±0.5 82.1±1.7 72.7±1.4 69.9±1.4 80.0±0.5 78.8±2.2
FactorGCN [48] 78.4±1.3 77.6±2.1 47.0±1.7 45.4±2.0 72.9±2.2 69.7±3.1 59.6±1.8 54.7±2.8 74.4±0.8 70.8±3.0
LGD-GCN (ours) 93.7±0.4 93.9±0.4 85.5±0.6 84.0±0.8 85.2±0.6 83.8±1.3 74.4±0.5 72.3±1.5 81.5±0.6 80.6±2.2

TABLE V: MICRO-F1 (LEFT) AND MACRO-F1 (RIGHT) SCORES (%) ON SYNTHETIC GRAPHS WITH DIFFERENT
NUMBER OF LATENT FACTORS

Methods 4 6 8 10 12
MLP 79.3±0.5 77.9±0.7 55.5±0.4 54.8±0.6 37.0±0.8 36.0±0.8 25.9±0.6 24.5±0.7 21.2±0.8 20.1±0.9
GCN [6] 74.5±0.8 78.3±0.9 56.3±0.7 55.6±0.9 38.2±0.9 37.2±1.0 28.0±0.7 26.9±0.5 23.1±0.8 22.2±0.9
DisenGCN [17] 84.1±1.0 82.9±1.1 60.4±0.9 59.9±1.0 41.4±1.3 40.2±1.2 29.4±0.7 28.1±0.7 24.2±0.8 23.4±0.7
LGD-GCN (ours) 87.2±0.5 86.1±0.5 65.0±0.5 64.2±0.6 43.6±0.7 42.5±0.6 30.2±0.5 28.8±0.5 26.1±0.5 25.1±0.5

(a) DisenGCN (1st Layer) (b) DisenGCN (2nd Layer) (c) LGD-GCN (1st Layer) (d) LGD-GCN (2nd Layer) (e) LGD-GCN∗ (2nd Layer)

Fig. 4: Feature correlation analysis. The latent features are obtained on the test split of the graph, synthesized with four latent
factors, by the trained DisenGCN and our LGD-GCN. LGD-GCN∗ denotes LGD-GCN w/o the module LG.

network in a certain state cannot reflect the "true" relations
between users. In this circumstance, the proposed LGD-GCN
is able to connect the far reached but potentially related users
by globally inferring the underlying graph structures, which
may explain why significant performance improvement can be
attained. In particular, for citation networks which are typically
sparse, our model is able to boost the performance by a margin
of 1.9% on average, showing its effectiveness in absorbing
extra information from a global range.

2) Multi-label Node Classification: To validate the disen-
tangling ability of the proposed LGD-GCN quantitatively, we
apply MLP, i.e. a multi-layer perception, GCN, DisenGCN,
and our model to train synthetic graphs with various number of
latent factors for multi-label node classification. Specifically,
we randomly split each data set into train/validation/test as
0.6/0.2/0.2, measure model performance in both Micro-F1 and
Macro-F1 scores, and report them in Table V. From the results,
our model consistently outperforms others while varying the
number of latent factors. Especially, LGD-GCN significantly
outperforms DisenGCN by (Micro-F1) 4.6% and (Macro-F1)
4.3% on the synthetic graph with six latent factors.

C. Qualitative Evaluation

To gain more understanding of our proposed method, we
conduct various qualitative experiments to take closer exami-
nations in parallel with DisenGCN. These evaluations focus on

the disentanglement performance and the learned embeddings’
informativeness.

1) Visualization of Disentangled Representations: We plot
in Fig. 1b a 2D visualization of the learned representations
w.r.t. four latent factors on the synthetic graph. Compared to
that of DisenGCN in Fig. 1a, our model displays a highly dis-
entangled pattern, evidenced by the intra-factor compactness
and inter-factor separability. It also indicates that the common
type of factor-specific information is captured, and globally
shared by all nodes.

2) Correlation of Disentangled Features: The correlation
analysis of the latent features learned by DisenGCN and our
model is presented in Fig. 4. As observed, our model show-
cases a more block-wise correlation pattern, which becomes
denser in the second layer. We also analyze the feature cor-
relation of our model while ablating the module LG, denoted
as LGD-GCN∗ in Fig. 4e. Though the block-wise pattern in
Fig. 4e can still be observed, it is obviously weaker than that
of LGD-GCN in Fig. 4d. This verifies the significance of LG.
The captured global information, specific to each latent factor,
strengthens the correlation between the intra-factor features,
and enhances the interpretability and disentangling power.

3) Visualization of Node Embeddings: Fig. 5 and Fig. 6
provide an intuitive comparison between the learned node
embeddings of DisenGCN and our model. It can be observed
that the proposed LGD-GCN generally learns better node
embeddings and exhibits a high intra-class similarity and inter-
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(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer

Fig. 5: Visualization of node embeddings learned by DisenGCN

(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer

Fig. 6: Visualization of node embeddings learned by LGD-GCN (ours)

(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer (e) Pubmed

Fig. 7: Convergence behavior of DisenGCN and the proposed LGD-GCN

class difference. By absorbing rich global information specific
to each latent factor, our model learns more informative node
aspects and thus leads to superior discriminative power.

D. Convergence Behavior and Complexity Analysis

In Fig. 7, we plot evolution of the testing accuracy for
DisenGCN and the proposed LGD-GCN. In general, Disen-
GCN fluctuates significantly by epochs and is prone to get
stuck into a local optimum, while our model appears more
stable and able to converge to a higher peak. For complexity
analysis, we first report the average training time (ms) per
epoch in Table VI. On average, LGD-GCN is around 11.4%
and 53.3% slower than DisenGCN on small data sets (Cora
and Citeseer) and large datasets (Pubmed, Blogcatalog, and
Flickr). That is mainly caused by the computation of latent
graphs with the complexity of O(|V|2). However, with the
significant performance gain, we believe that such costs may
be worthwhile especially when the computational capability
and stability are being steadily empowered. On the other
hand, as we have the time complexity of our model as
O( 5 3 |V| + 2|E |3 + (|V| + (3 − 1):) |V|), there should be no
trade-off between the channel number " and running time.

TABLE VI: AVERAGE TRAINING TIME (MS) PER
EPOCH

Datasets Blogcatalog Flickr Cora Citeseer Pubmed
DisenGCN 15.9 22.0 28.4 35.4 116.8

LGD-GCN (Ours) 26.4 33.8 31.6 39.5 163.9

However, our experimental findings show that the inference
time of LGD-GCN gets approximately 0.02 ms increased with
one channel added, which is mainly owing to the additional
time consumed by looping channels in our implementation.

E. Parameter and Ablation Analysis

In this subsection, we investigate the sensitivity of three
essential hyper-parameters and perform ablation analysis over
the proposed different modules.

1) Analysis of Space Modeling Coefficient _B?024: We
plot the learning performance of our model w/o L38E while
varying _B?024 in Eq. (8). For example, we adopt a range
of {0, 0.01, 0.05, 0.1, 0.5, 1} on Flickr and report the learning
performance in Fig. 8b. In general, the accuracy goes up first
and then drops; promising result can be attained by choosing
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(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer (e) Pubmed

Fig. 8: Analysis of parameter _B?024

(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer (e) Pubmed

Fig. 9: Analysis of parameter _38E

(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer (e) Pubmed

Fig. 10: Analysis of parameter :

(a) Blogcatalog (b) Flickr (c) Cora (d) Citeseer (e) Pubmed

Fig. 11: Analysis of parameter "

Fig. 12: Analysis of parameter " on a synthetic graph

_B?024 from [0.05, 0.5]. Similar trends can also be observed
on the other four data sets.

2) Analysis of Diversity Coefficient _38E : We also examine
the effect of _38E by varying it value. For example, _38E is
changed from 0 to 0.5 on Citeseer. The results are shown
in Fig. 9. Basically, _38E is relatively robust within [0, 0.1]
for all the data sets except for Flickr whose stable range is
[0, 0.05]. Once out of that range, the results drop to a low
point, suggesting that overly emphasizing diversity could be
harmful to model performance.

3) Analysis of Density Parameter :: Fig. 10 displays the
impact of : . The results are relatively stable while selecting
: around 4 for Cora as well as Citeseer, and 10 for the rest.
However, as : is larger, the accuracy performance deteriorates
obviously. Such trend may be caused by noisy edges in cases
of a large : , which leads to inappropriate information sharing.

4) Analysis of Channel Number ": We test the effect of
channel number " on real-world data sets on Fig. 11. As can
be observed, LGD-GCN attains its highest accuracy with the
channel number around 16 for Blogcatalog and 8 for Flickr. In
comparison, the ideal channel number is relatively smaller on

TABLE VII: ABLATION ANALYSIS

Components Blogcatalog Flickr Cora Citeseer Pubmed
- 86.1±0.5 69.6±0.6 81.2±1.2 68.9±1.5 78.5±1.1

LB?024 91.1±0.5 70.2±1.1 83.2±0.4 72.4±0.6 78.9±0.9
LB?024+L38E 91.5±0.3 70.5±1.1 83.4±0.4 73.0±0.9 79.2±0.8
LB?024+LG 93.7±0.5 85.2±0.7 84.0±0.9 74.0±0.8 80.8±0.7

LB?024+L38E+LG 93.7±0.4 85.5±0.6 85.2±0.6 74.4±0.5 81.5±0.6

citation networks, where LGD-GCN performs the best with "
being 4. We also study its influence on the synthetic graph with
eight predefined factors as an typical example. From Fig. 12,
our model performs the best when the number of channels is
around 8, the true number of the latent factors.

5) Ablation Analysis: We validate the contributions of the
proposed modules denoted by LB?024, L38E , and LG in node
classification. From Table VII, we can see that both modules
can independently and jointly improve the accuracy.

V. CONCLUSION AND FUTURE WORK

We argue that most GCNs have inherited issues due to their
entangled representations and/or heavy reliance on the local
graph information. Motivated by this problem, we propose a
novel framework termed as LGD-GCN to learn disentangled
node representations both locally and globally. LGD-GCN is
capable of disclosing the hidden node relations pertinent to
each latent factor. Specifically, we first present a disentangled
latent continuous space with Gaussian mixtures, from which
various new graphs w.r.t. different factors can be learned and
disentangled. These graphs reflect the latent structure infor-
mation, i.e. the hidden relations between nodes, overall from
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different angles. We then utilize them to aggregate and capture
the factor-specific information globally, which strengthens the
intra-factor consistency. Moreover, to avoid the mistakenly
preserved confounding of the factors, we also promote the
inter-factor diversity by a novelly designed regularizer along
with the latent space modeling. Extensive experiments over
synthetic and five real-world data sets well demonstrate the
improved classification accuracy and disentangling ability over
the state-of-the-arts both quantitatively and qualitatively.

In this article, we model the disentangled latent space with
the Gaussian mixture model, and weight each mixture equally
for simplicity. Despite of its efficiency, this may not be the
optimal or even valid in many real scenarios. In the future,
it would be important and beneficial to investigate a more
flexible and applicable way for describing the disentangled
latent space. Additionally, compared to other disentangled
state-of-the-arts only relying on the local graph information,
our LGD-GCN shows a higher algorithm complexity because
of its denser computational cost on inferring the latent graph
information globally. Therefore, another interesting direction
for future work is to deploy a lighter algorithm to learn the
latent graphs without losing informativeness.
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