
Graph Neural Networks with Diverse Spectral Filtering
Jingwei Guo

∗

University of Liverpool

Liverpool, UK

Jingwei.Guo@Liverpool.ac.uk

Kaizhu Huang
†

Duke Kunshan University

Suzhou, China

Kaizhu.Huang@dukekunshan.edu.cn

Xinping Yi

University of Liverpool

Liverpool, UK

Xinping.Yi@Liverpool.ac.uk

Rui Zhang

Xi’an Jiaotong-Liverpool University

Suzhou, China

Rui.Zhang02@xjtlu.edu.cn

ABSTRACT
Spectral Graph Neural Networks (GNNs) have achieved tremen-

dous success in graph machine learning, with polynomial filters

applied for graph convolutions, where all nodes share the identi-
cal filter weights to mine their local contexts. Despite the success,

existing spectral GNNs usually fail to deal with complex networks

(e.g., WWW) due to such homogeneous spectral filtering setting that
ignores the regional heterogeneity as typically seen in real-world

networks. To tackle this issue, we propose a novel diverse spectral
filtering (DSF) framework, which automatically learns node-specific

filter weights to exploit the varying local structure properly. Par-

ticularly, the diverse filter weights consist of two components —

A global one shared among all nodes, and a local one that varies

along network edges to reflect node difference arising from distinct

graph parts — to balance between local and global information. As

such, not only can the global graph characteristics be captured,

but also the diverse local patterns can be mined with awareness of

different node positions. Interestingly, we formulate a novel opti-

mization problem to assist in learning diverse filters, which also

enables us to enhance any spectral GNNs with our DSF framework.

We showcase the proposed framework on three state-of-the-arts

including GPR-GNN, BernNet, and JacobiConv. Extensive experi-

ments over 10 benchmark datasets demonstrate that our framework

can consistently boost model performance by up to 4.92% in node

classification tasks, producing diverse filters with enhanced inter-

pretability. Code is available at https://github.com/jingweio/DSF.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Graph Neural Networks, Spectral Filtering, Diverse Mixing Patterns

∗
Also with Xi’an Jiaotong-Liverpool University.

†
Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00

https://doi.org/10.1145/3543507.3583324

ACM Reference Format:
Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang. 2023. Graph Neural

Networks with Diverse Spectral Filtering. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583324

1 INTRODUCTION
Recent years have witnessed the explosive growth of learning from

graph-structured data. As an emerging technique, Graph Neural

Networks (GNNs) have recently attracted significant attention in

handling data with complex relationships between entities. Capa-

ble of exploiting node features and graph topology simultaneously

and adaptively, GNNs achieve state-of-the-art performance in a

wide variety of graph analytical tasks, such as social analysis and

recommendation system [8, 45]. Spectral GNNs are a class of GNN

models that implement convolution operations in the spectral do-

main. Recent studies show that modern variants mostly function as

polynomial spectral filters [5, 9, 11, 20, 24, 42]. Specifically, these

filters transform the input source (node features) into a new desired

space by selectively attenuating or amplifying its Fourier coeffi-

cients induced by the graph Laplacian. Existing efforts either design

or learn the polynomial coefficients to simulate different types of

filters including low, band, and/or high-pass. Despite their success,

high degree polynomials are necessary as typically required by

their expressive power [9, 20, 28] so as to reach high-order neigh-

borhoods. Nevertheless, most spectral GNNs would fail practically

due to the overfitting and/or over-squashing problem [2, 9, 42].

They usually end up enforcing identical filter weights among nodes,

albeit lying in different network areas, to mine their distinct local

contexts (see details in Section 4.1). Namely, the existing spectral

GNN models (including GPR-GNN [9], BernNet [20], and Jacobi-

Conv [42]) are mostly restricted in the homogeneous spectral filter-
ing framework, and focus on the uniform filter weights learning.

Such limitation is induced by simplifying diverse regional graph

patterns as homogeneous ones at different localities.

However, real-world networks typically exhibit heterogeneous
mixing pattern [38], i.e., different graph parts may possess diverse

characteristics (e.g. local assortative level could vary across the

graph as illustrated in Figure 2). Apparently, GNNs with classic

homogeneous spectral filtering are inadequate to model the varying

regional pattern; this could result in poor interpretability on the

micro graph mining which is important in accomplishing node-

level tasks. A single shared weight set tends to pull the model in

many opposite directions, which may lead to a biased model that

https://github.com/jingweio/DSF
https://doi.org/10.1145/3543507.3583324
https://doi.org/10.1145/3543507.3583324

WWW ’23, May 1–5, 2023, Austin, TX, USA Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang

merely captures the most common graph patterns while leaving

others not well covered. Ideally, in order to properly mine different

local contexts, distinct filter weights might be needed for different

nodes. To do so, one may parameterize each node a separate set

of trainable filter weights. Unfortunately, this would substantially

increase model complexity and cause severe overfitting to local

noises, especially in case of large-scale graphs with complex linking

patterns (see Section 5.3).

This work focuses on adapting spectral GNN models to graphs

with diverse mixing patterns. We argue that, instead of parame-

terizing each node arbitrarily different filter weights or a uniform

weight, a reasonable design should be built upon a shared global
model whilst locally adapted to each node with awareness of its lo-
cation in the graph. Such a proposition is well evidenced by the

key observation that nearby nodes tend to display similar local

contexts because of their overlapped neighborhoods. For nodes

far apart, they are likely to have more possibilities, e.g., even if

residing at disjoint graph regions, these nodes may also possess

akin local structures due to their similar positions such as graph

borders (see Figure 1d and Figure 5). As such, we aim to take advan-

tage of such rationale as a guide to make node-wise adjustments.

To this end, we formulate a novel optimization problem to first

encode the positional information of nodes. It embeds graph ver-

tices into a low-dimensional coordinate space, based on which we

learn node-specific coefficients properly to alter the original filter

weights. Accordingly, the global graph filter can be localized on

the micro level, allowing individual nodes to adaptively exploit

their diverse local contexts. Meanwhile, some beneficial invariant

graph properties can still be preserved by virtue of the mutual filter

weights. The proposed framework, named diverse spectral filter-
ing (DSF), flexibly handles the complex graph and makes a proper

balance between its conformal and disparate regional patterns with

enhanced interpretability, as shown in Figure 1. Besides, our DSF is

easy to implement and can be readily plug-and-play in any spectral

GNNs with considerable performance gains.

To summarize, the main contributions of this work are three-fold:

• We show that many existing spectral GNNs are restricted in

the form of homogeneous spectral filtering, and identify the

need to break this ceiling to deal with complex graphs with

regional heterogeneity.
• We propose a novel diverse spectral filtering (DSF) frame-

work to learn diverse and interpretable spectral filters on the

micro level, which consistently leads to performance gains

for many spectral GNNs.

• We showcase our DSF framework on three state-of-the-arts

including GPR-GNN [9], BernNet [20], and JacobiConv [42].

Extensive evaluations on 10 real-world datasets demonstrate

the superiority of DSF framework in node classification tasks.

2 RELATEDWORK
2.1 Spectral Graph Neural Networks
Recent studies have shown that most spectral GNNs operate as

polynomial spectral filters [9, 20, 42] with either fixed designs such

as GCN [24], APPNP [15], and GNN-LF/HF [51] or learnable forms,

e.g., ChebNet [11], AdaGNN [12], GPR-GNN [9], ARMA [5], Bern-

Net [20], and JacobiConv [42]. Further remarks can be found in

(a) Chameleon (b) Squirrel

(c) Cornell (d) Node-specific Filter Weights

Figure 1: (a)-(c) Diverse filters learned from real-world networks,
where five representative curves are plotted for illustration. On each
graph, these filters display similar overall shapes but different local
details in function curves, showing the capability of our DSF in
capturing both the global graph structure and locally varied linking
patterns. (d) Visualization of node-specific filter weights on Cornell
dataset, where alike color indicates similar filter weights between
nodes. Overall, nodes can be differentiated based on their disjoint
underlying regions as circled by the blue and green dashed lines, and
far-reaching nodes can still learn similar filter weights due to their
akin local structures. E.g., vertices on the graph border are mostly
ingrained in a line subgraph such as •−•−•, and some unusual cases
can be handled (see details in Section 5.4). These results justify the
enhanced model interpretability by learning diverse spectral filters
on the micro level.

Appendix A. For both types, it is identified that most spectral GNNs

apply a homogeneous setting for spectral filtering. These present

methods tend to focus on the most frequent graph layouts while

under-exploring the rich and diverse local patterns. To alleviate

this issue, we introduce a diverse spectral filtering (DSF) framework

to enhance spectral GNNs with trainable diverse filters. It is worth

noting that though both JacobiConv [42] and AdaGNN [12] learn

multiple filters in a seemingly similar way, they are essentially dif-

ferent from our method in nature. Concretely, their adaptive filters

are mainly for studying each feature channel independently, whilist

our diverse filters aim at individual context modeling for each node.

2.2 Graphs with Complex Linking Patterns
Early wisdom in the community was mainly dedicated to learning

from graphs with strong homophiliy (assortativity) where most

connected nodes share similar attributes and same label [15, 24, 40].

Until 2020, Pei et al. [33] and Zhu et al. [50] first emphasized the

importance of studying GNNs in the heterophily (disassortativ-

ity) setting, thus categorizing real-world networks into homophilic

and heterophilic graphs. Recently massive works [6, 9, 18, 47, 48]

have been done which focus more on complex graph scenarios.

For example, FAGCN [6] captured both similarity and dissimilarity

between pairwise nodes. As much attention from the community

Graph Neural Networks with Diverse Spectral Filtering WWW ’23, May 1–5, 2023, Austin, TX, USA

was paid in analyzing graph patterns on the macro/global-level,

some researchers [29, 38] start looking into the micro/local graph

structures surrounding nodes. In particular, Suresh et al. [38] in-

troduced a node-level assortativity to show heterogeneous mixing

patterns inherent in real-world graphs. However, these existing

works mostly tackle this regional heterogeneity phenomenon under

the intuitive message passing framework [16]. Surprisingly, none of

them attempts to solve it from the spectral perspective, a theoreti-

cally more elegant framework. To this end, we explore in this paper

how to learn spectral GNNs on graphs with diverse mixing patterns

and propose a novel framework called diverse spectral filtering.
It is noted that a recent proposal [49] shares some similarity

with our work. This method takes the idea of dynamic neural net-

works [19], and introduce PA-GNN based on GPR-GNN [9] by

learning node-specific weight offsets. Though PA-GNN is also orig-

inated in a spectral-based framework, it leverages a simple but less-

justified node-specific aggregation scheme and encodes different

(but probably inconsistent) sources of information for prediction.

On one hand, this would fail to learn interpretable filters; on the

other hand, such drawback limits the accuracy gain and may even

hurt the performance, which can be later seen in the experiment

part.

2.3 Positional Encoding
Positional encoding (PE) aims to quantify the global position of, e.g.,

pixels in images, words in texts, and nodes in graphs. It plays a cru-

cial role in facilitating various neural networks such as CNNs [21],

RNNs [17], and Transformer [13]. For GNNs, PE has been widely

used to increase their model expression [7, 14, 41] as bounded by

Weisfeiler-Leman (WL) graph isomorphism test [31, 43, 46]. How-

ever, existing focus is mainly put on message-passing GNNs [16],

while few research has been conducted on the models defining

graph filter in the spectral domain. Recently, Wang and Zhang [42]

has established a connection between WL test and the expressive

power of spectral GNNs, which motivates us to investigate fur-

ther how to leverage PE for spectral GNN models. We note that

PA-GNN [49] also extract latent positional embeddings from the

graph structure, which however cannot be better changed/adjusted

to tasks and is mixed with other (even incompatible) attributes.

Compared to this, our DSF framework model the positional infor-

mation of nodes in an independent channel via an iterative updating,

thereby producing more expressive and task-beneficial representa-

tions. The advantages of this decoupled learning paradigm on node

positional and structural features are also verified by other recent

works [14, 41].

3 NOTATIONS AND PRELIMINARIES
Let G = (V, E) denote an undirected graph with node set V =

{𝑣𝑛}𝑁𝑛=1 with 𝑁 = |V| and edge set E where (𝑣𝑖 , 𝑣 𝑗) ∈ E if two

distinct nodes 𝑣𝑖 and 𝑣 𝑗 are linked by an edge. We use N𝑖,𝑘 =

{𝑣 𝑗 |𝑑𝑖𝑠 (𝑣𝑖 , 𝑣 𝑗) ≤ 𝑘,∀𝑣 𝑗 ∈ V} to represent the 𝑘-hop neighborhood

of node 𝑣𝑖 . The graph topology is symbolized with an𝑁×𝑁 adjacent

matrix A such that A𝑖, 𝑗 = 1 if (𝑣𝑖 , 𝑣 𝑗) ∈ E and 0 otherwise. The

degree matrix D is a diagonal matrix with node degrees, e.g., deg𝑖

w.r.t. node 𝑣𝑖 , in its diagonal elements. The graph Laplacian matrix

is defined as L = D − A with normalized version L̂ = I − Â where

(a) Local Label Homophily

(b) Local Graph Frequency

Figure 2: Distributions of two graph properties on various real
graph data (see details in Section 4.1).

Â = D−
1

2 AD−
1

2 and I is an 𝑁 ×𝑁 identity matrix. Node features are

denoted by X ∈ R𝑁×𝑓 with 𝑓 being the raw feature dimension. We

use x𝑖 to represent the 𝑖th row of X with respect to node 𝑣𝑖 . In node

classification tasks, each node 𝑣𝑖 is assigned with a class 𝑐𝑖 . Thus it

has a ground truth one-hot vector y𝑖 ∈ R𝐶 , where 𝐶 ≤ 𝑁 denotes

class number. Real-world networks are then divided into homophilic

and heterophilic graphs with edge homophily ratio [50] on node

labels, H =
| { (𝑣𝑖 ,𝑣𝑗) |y𝑖=y𝑗∧(𝑣𝑖 ,𝑣𝑗) ∈E } |

|E | ranging from 0 to 1 with

higher values suggesting higher homophily (lower heterophily).

3.1 Laplacian Decomposition
Let L̂ = UΛU𝑇 denote the eigen decomposion of L̂, where U =

[u1, u2, ..., u𝑁] ∈ R𝑁×𝑁 is a matrix of eigenvectors, and Λ =

diag(_1, _2, ..., _𝑁) is the diagonal matrix of eigenvalues. With L̂
being positive semidefinite, we have UU𝑇 = U𝑇U = I, of which
{u𝑛}𝑁𝑛=1 is also called the Laplacian eigenbases. We then have

_𝑛 = u𝑇𝑛 L̂u𝑛 =
∑︁

(𝑣𝑝 ,𝑣𝑞) ∈E
(1√︃

deg𝑝

u𝑛,𝑝 −
1√︃
deg𝑞

u𝑛,𝑞)2 (1)

which measures the frequency or smoothness level of each eigen-

basis u𝑛 on the graph. In this paper, we refer to _𝑛 as the global

graph frequency. Based on all above, the graph Fourier transform

and inverse Fourier transform can be respectively formulated as

S = ℱ(X) = U𝑇X and X = ℱ
−1 (S) = US, where S is often called

as the Fourier transformed features or Fourier coefficients of X.

3.2 Graph Spectral Filtering
The central idea of spectral GNNs is to transform the graph signal

(an instance of node features) in the Fourier space by applying

graph spectral filters. They usually take the form as Z = 𝑔(L̂)X =

WWW ’23, May 1–5, 2023, Austin, TX, USA Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang

U𝑔(Λ)U𝑇X where 𝑔 : [0, 2] → R is a filter function defined on the

spectrum of graph Laplacian. This function creates frequency re-

sponse to filter different components of X on Laplacian eigenbases.

Take one-channeledX as an example. As S = U𝑇X = [𝑠1, 𝑠2, ..., 𝑠𝑁]𝑇 ,
we have X =

∑𝑁
𝑛=1 𝑠𝑛 · u𝑛 and Z =

∑𝑁
𝑛=1

(
𝑔(_𝑛)𝑠𝑛

)
·u𝑛 with scalar

𝑠𝑛 . It can be seen that node feature matrix X is mapped into a

new Z, by either decreasing or increasing Fourier coefficients S
via 𝑠𝑛 ↦→ 𝑔(_𝑛)𝑠𝑛 selectively. Recent studies have shown that most

spectral GNN models implement the filter function 𝑔(·) with poly-

nomials [5, 20, 42] following Z =
∑𝐾
𝑘=0

𝜔𝑘 L̂𝑘X =
∑𝐾
𝑘=0

𝛼𝑘𝑃𝑘 (L̂)X,

where both𝜔𝑘 and 𝛼𝑘 denote the polynomial coefficient (also called

filter weight), and 𝑃𝑘 : [0, 2] → R is a polynomial basis in the 𝑘th

order. Taking one-channel X as an example, the existing spectral

GNNs can then be unified as

Z =

𝐾∑︁
𝑘=0

𝛼𝑘𝑃𝑘 (L̂)X =

𝑁∑︁
𝑛=1

𝑠𝑛 · u𝑛 (2)

where 𝑠𝑛 =
∑𝐾
𝑘=0

𝛼𝑘𝑃𝑘 (_𝑛)𝑠𝑛 for brief symbolization. Present ef-

forts either fix or learn filter weights with different classes of poly-

nomial basis. For instance, APPNP [15] leverages personalized

PageRank [32] to make polynomial basis 𝑃𝑘 (_) = (1 − _)𝑘 and

set 𝛼𝑘 = 𝛼𝑘

1−𝛼 with constant hyper-parameter 𝛼 . As an extension of

APPNP, GPR-GNN [9] directly trains 𝛼𝑘 with gradient descent. A

comprehensive summarization of various spectral GNNs as poly-

nomial spectral filters can be found in [42].

4 DIVERSE SPECTRAL FILTERING
In this section, the motivation of diverse spectral filtering is first

provided with both theoretical and empirical analysis. We then

present our novel diverse filtering framework.

4.1 Motivations
The unified formula in Eq. 2 can be considered as the homogeneous
spectral filtering, where all nodes share the identical coefficient 𝑠𝑛
equally operated on their basis signals, i.e., all elements in u𝑛 , for
feature transformation. It seems reasonable as one can learn arbi-

trary 𝑠𝑛 with a polynomial graph filter [37], which formally requires

high-degree polynomials and reaching high-order node neighbor-

hood [9, 20, 28]. However, aggregating/passing information across

a long path via L̂𝑘X with 𝑘 → ∞ is prone to cause overfitting to

noises and/or over-squashing problem [2]. Chien et al. [9] practi-

cally show that the polynomial coefficients in Eq. 2 converges to

zero as 𝑘 gets larger. With this empirical finding, Wang and Zhang

[42] even propose strategies to optimize {𝛼𝑘 }𝐾𝑘=0 with decreasing

scale. All the above reveal the local modeling nature of the existing

spectral GNNs. In other words, nodes, albeit lying in different graph

parts, are enforced to mine their distinct local contexts with the

identical filter weights {𝛼𝑘 }𝐾𝑘=0. Such filtering scheme implicitly

assumes the similar distributions between different graph regions.

This hypothesis however may not be accurate due to the intrin-

sic complexity in forming real-world networks. To make further

investigation, we define two essential graph properties on the local

graph level to empirically observe their changing behaviors across

the graph. The definitions are given below.

Definition 1 (Local Label Homophily). We define the Local Label

Homophily as a measure of the local homophily level surrounding

each node 𝑣𝑖 :

ℎ𝑖 =
|{(𝑣𝑝 , 𝑣𝑞) |y𝑝 = y𝑞 ∧ (𝑣𝑝 , 𝑣𝑞) ∈ E𝑖,𝑘 }|

|E𝑖,𝑘 |
Here,ℎ𝑖 directly computes the edge homophily ratio [50] on the sub-

graph made up of the k-hop neighbors, and E𝑖,𝑘 = {(𝑣𝑝 , 𝑣𝑞) |𝑣𝑝 , 𝑣𝑞 ∈
N𝑖,𝑘 ∧ (𝑣𝑝 , 𝑣𝑞) ∈ E} denotes its edge set.
Definition 2 (Local Graph Frequency). The Local Graph Frequency
is defined by measuring the local smoothness level of the decom-

posed Laplacian eigenbases, and for each node 𝑣𝑖 we have:

_𝑛,𝑖 =
∑︁

(𝑣𝑝 ,𝑣𝑞) ∈E𝑖,𝑘
(1√︃

deg𝑝

u𝑛,𝑝 −
1√︃
deg𝑞

u𝑛,𝑞)2

where _𝑛,𝑖 denotes the frequency or smoothness level of each Lapla-

cian eigenbasis u𝑛 upon the subgraph induced by the 𝑘-hop neigh-

bors. Since all summed elements in Eq. 1 are positive and E𝑖,𝑘 ⊆ E,
we can always have a b𝑖 ∈ (0, 1) such that _𝑛,𝑖 = b𝑖_𝑛 .

Figure 2 shows the distributions of these two graph properties

on various real-world data from different domains (see details in

Section 5.1.1). We take two-hop neighborhood to illustrate the local

graph pattern and remove a few extreme statistical values for better

visualization. Moreover, as we usually have a large number of the

decomposed eigenbases {u𝑛}𝑁𝑛=1, it is not quite feasible to visualize
them all. Thus, we rank them based on their global graph frequency

_𝑛 , and calculate the local graph frequencies with the middle one as

the most representative demonstration. Similar statistics with low-

and high-frequency can be found in the Appendix (see Figure 6).

Overall, we observe skewed and even multi-modal distributions.

These phenomena imply that the local structural patterns are not

uniformly distributed between different graph regions, but exhibit-

ing evident heterogeneity. More importantly, in the spectral domain,

the global graph frequency _𝑛 usually fails to capture the diverse

local characteristics of u𝑛 as shown in Figure 2b. Thus, weighing u𝑛
with the only one scalar coefficient, 𝑠𝑛 computed as a function of

_𝑛 , may not be appropriate and tends to cause ineffective modeling.

In other words, a diverse filtering framework appears necessary so

that one could fully exploit the heterogeneous mixing patterns for

adaptive micro graph learning.

4.2 Diverse Filtering Framework
To implement diverse filtering, we aim to improve the classic ho-
mogeneous spectral filtering by endowing each node a different

set of transforming coefficients on the basis signals. Particularly,

the scalar 𝑠𝑛 is expanded as a vector ŝ𝑛 = [ŝ𝑛,1, ŝ𝑛,2, ..., ŝ𝑛,𝑁]𝑇 with

the same dimensions as the eigenbasis u𝑛 . Eq. 2 can be thereby

enhanced into Z =
∑𝑁
𝑛=1 ŝ𝑛 ⊙ u𝑛 where ⊙ denotes element-wise

multiplication, and each element in ŝ𝑛 independently operates on

the corresponding signal in u𝑛 . Since 𝑠𝑛 is originally expressed as

a polynomial function of _𝑛 , it is reasonable to make

ŝ𝑛,𝑖 = 𝑓 (_𝑛,𝑖) =
𝐾∑︁
𝑘=0

𝛼𝑘𝑃𝑘 (_𝑛,𝑖)𝑠𝑛 (3)

based on our analysis in the previous section, where _𝑛,𝑖 denotes the

local graph frequency specified in Definition 2. However, it would

Graph Neural Networks with Diverse Spectral Filtering WWW ’23, May 1–5, 2023, Austin, TX, USA

be computationally expensive to calculate _𝑛,𝑖 , which requires not

only Laplacian decomposition but also subgraph extraction. To

mitigate this issue, we turn to exploiting the substitution using

_𝑛,𝑖 = b𝑖_𝑛 s.t. 0 < b𝑖 < 1 with the following proposition.

Proposition 1. Suppose a K-order polynomial function 𝑓 : [0, 2] →
Rwith polynomial basis 𝑃𝑘 (·) and coefficients {𝛼𝑘 }𝐾𝑘=0 in real num-

ber. For any pair of variables 𝑥, 𝑥 ∈ [0, 2] satisfying 𝑥 = b𝑥 where b

is a constant real number, we always have a function 𝑔 : [0, 2] → R
with the same polynomial basis but a different set of coefficients

{𝛽𝑘 }𝐾𝑘=0 such that 𝑓 (𝑥) = 𝑔(𝑥).

Proposition 1 suggests that the polynomial 𝑓 (_𝑛,𝑖) computing

ŝ𝑛,𝑖 in Eq. 3 can be reformulated into another function of variable _𝑛 ,

using the same basis 𝑃𝑘 (·) but a different coefficient set {𝛽𝑘 }𝐾𝑘=0, i.e.,
ŝ𝑛,𝑖 = 𝑓 (_𝑛,𝑖) =

∑𝐾
𝑘=0

𝛼𝑘𝑃𝑘 (b𝑖_𝑛)𝑠𝑛 =
∑𝐾
𝑘=0

𝛽𝑘,𝑖𝑃𝑘 (_𝑛)𝑠𝑛 . There-
fore, our diverse spectral filtering can be formulated as:

Z =

𝑁∑︁
𝑛=1

ŝ𝑛 ⊙ u𝑛 =

𝐾∑︁
𝑘=0

diag(𝛽𝑘,1, 𝛽𝑘,2, ..., 𝛽𝑘,𝑁)𝑃𝑘 (L̂)X

where each node 𝑣𝑖 is parameterized with a different set of filter

weights {𝛽𝑘,𝑖 }𝐾𝑘=0. The remaining issue is then how to learn these

weights. Existing state-of-the-art spectral GNNs [9, 20, 42] usually

set filter weight as free parameters to be directly trained. However,

in our framework, doing this would not only lead to a high compu-

tational complexity, but also could cause severe overfitting to local

noises. In the following, we introduce two strategies so as to deal

with the issue.

4.2.1 Position-aware Filter Weights. It has been shown that

{𝛽𝑘,𝑖 }𝐾𝑘=0 is utilized to mine the local context of each node 𝑣𝑖 . The

differences among these filter weight sets are meant to capture

regional heterogeneity on the graph. From another angle, if the

filter weights are learned to be similar between nodes, they are

more likely to lie in the same region sharing almost identical lo-

cal structural patterns. While, distant node pairs may have more

possibilities, e.g., even if residing at disjoint graph regions, these

vertices could still possess alike local subgraphs due to their similar

positions in the network such as graph borders. This motivates

us to make use of node positional information as a guide to learn

diverse filter weights.

To do so, the first step is to encode the node positions into a latent

space while preserving their graph-based distance. To attain this,

inspired by graph signal denoising [51] and Laplacian loss [4, 25],

we formulate an novel optimization problem with the objective L𝑝 :

argmin

P
L𝑝 = ∥X𝑝 − P∥2𝐹 + ^1𝑡𝑟 (P

𝑇 L̂P) + ^2∥P𝑇 P − I𝑑 ∥2𝐹 (4)

where P = [P1, P2, ..., P𝑁]𝑇 ∈ R𝑁×𝑑 is a matrix of node positional

embeddings, X𝑝 initializes P (more information can be seen in

Appendix C.2), I𝑑 is an 𝑑 × 𝑑 identity matrix, and both ^1 and ^2
are non-negative trade-off coefficients. The first term guides P to

be close to X𝑝 , while the middle term enforces adjacent nodes to

stay closer in the positional latent space. A penalty term is lastly

appended to ensure orthogonal feature channels for attaining a valid

coordinate system. Minimizing L𝑝 therefore enables a canonical

positioning of nodes in the graph. We take an iterative gradient

method to solve Eq. 4, and derive the iterative updating rule:

P(𝑘+1) = [1X𝑝 + (1 − [1)
(
(1 + [2)Â − [2 (P(𝑘)P(𝑘)

𝑇)
)
P(𝑘) (5)

where P(0) = X𝑝 , [1 = 1

1+^1−2^2 , [2 =
2^2

^1−2^2 , and the stepsize is set

as
[1
2
. Both [1 and [2 are constant hyper-parameters searched from

{0, 0.1, ..., 1.0} by 0.1, and the case [1 = 1.0 examines the effective-

ness of the initial X𝑝 . By iteratively updating P(𝑘) , the objective L𝑃
can be progressively minimized to solve the optimization problem.

In practical training, we need to normalize P(𝑘)P(𝑘)
𝑇
to ensure nu-

merical stability and benefit computational efficiency. Thus, Eq. 5

is enhanced into

P(𝑘+1) = [1X𝑝 + (1−[1)
(
(1+[2)Â−[2𝜎 (P(𝑘)WP(𝑘)

𝑇)
)
P(𝑘) (6)

where 𝜎 is a sigmoid function to produce values between 0 to 1,

and W ∈ R𝑑×𝑑 is a learnable mapping matrix to improve model

capacity. Besides, we also add a tanh activation function between

updating steps to make both positive and negative values in the

derived coordinate system, i.e., P(𝑘+1) ← Tanh(P(𝑘+1)). We further

refer to this process as iterative positional encoding (IPE).

So far, the positional information of nodes can be encoded into

a low-dimensional metric space by applying Eq. 6 recursively. To

learn polynomial filter weights with awareness of node positions, it

is empirically found that a simple yet effective non-linear mapping

works well:

𝛽𝑘,𝑖 = 𝜎𝑝 (W(𝑘)
𝑇

P(𝑘)
𝑖
+ b(𝑘)) (7)

where W(𝑘) ∈ R𝑑 and b(𝑘) ∈ R are learnbale parameters for poly-

nomial order𝑘 , and𝜎𝑝 is an activation function. As such, wemanage

to train models appropriately with guidance from node positions,

while avoiding the possible overfitting induced by parameterizing

each node arbitrarily with different filter weights. Moreover, model

complexity can also be greatly reduced with the lowered number

of trainable parameters from 𝑁 × (𝐾 + 1) to (𝑑 + 1) × (𝐾 + 1) where
𝑑 ≪ 𝑁 is feature dimension. Besides, we show our DSF framework,

albeit with the simple mapping formula in Eq. 7, is able to deal with

complex or even unusual graph cases in Section 5.4.

4.2.2 Local and Global Weight Decomposition. Though real-

world networks exhibit rich and diverse local patterns, the global

graph structure still matters, as it encodes some invariant graph

properties while simultaneously pruning local noises. Accordingly,

we decompose our node-specific filter weights 𝛽𝑘,𝑖 into two inde-

pendent coefficients𝛾𝑖 and \𝑘,𝑖 withmultiplication, i.e., 𝛽𝑘,𝑖 = 𝛾𝑖\𝑘,𝑖 .

We call 𝛾𝑖 ∈ R the global filter weight responsible for capturing the

global graph structure, and name \𝑘,𝑖 ∈ (−1, 1) as local filter weight
which is learned by the non-linear mapping in Eq. 7. As a benefit,

the local coefficients can flexibly rescale and/or flip the sign of the

global ones to capture node differences, while global connecting

patterns can also be mined with diminished noisy information. In

this paper, we call this technique Local and Global Weight Decom-

position (LGWD). Additionally, we find that JacobiConv [42] also

leverages a similar technique called PCD that decomposes the fil-

ter weight as 𝛼𝑘 = 𝜋𝑘
∏𝑘
𝑠=1 𝜌𝑠 (we replace their symbols to avoid

confusions with ours). This design aims to facilitate model training

with a decreasing scale on {𝛼𝑘 }𝐾𝑘=0 as 𝑘 grows, and all the nodes

still share the same parameter set. In contrast, our method works

WWW ’23, May 1–5, 2023, Austin, TX, USA Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang

on individual vertices through disentangling the globally shared

and locally varied node coefficients.

4.3 Overall Algorithm
As our DSF framework is independent of any underlying model,

it can flexibly improve any spectral GNNs. The overall pipeline of

our DSF framework is presented in Appendix C. In practice, we

find that the term P(𝑘)P(𝑘)
𝑇
in Eq. 5 involves a high computational

complexity in O(𝑁 2), and possibly causes a memory leak while

running models on large-scale graphs. To alleviate this, we remove

the corresponding term in the objective function, i.e.,

P𝑇 P − I𝑑
2
𝐹

in Eq. 4, and reformulate it into a regularizer:

L
Orth

=

P̂(𝐾) P̂(𝐾) − I𝑑
2
𝐹

(8)

where P̂(𝐾) is normalized from P(𝐾) such that each column of P̂(𝐾)

has zero mean and one 𝑙2 norm. Accordingly, we set [2 = 0 in

Eq. 6 and have another hyper-parameter _
Orth

called orthogonal

regularization parameter. In training, L
Orth

is penalized with the

task loss as L = L
task
+ _

Orth
L
Orth

. We further name this variant

as DSF-𝑥-R where 𝑥 denotes the backbone GNN, while referring to

the original one as DSF-𝑥-I.

4.3.1 Model Analysis. The proposed DSF framework extends the

existing spectral GNNs as

𝐾∑︁
𝑘=0

𝛼𝑘𝑃𝑘 (L̂)X→
𝐾∑︁
𝑘=0

𝛾𝑘diag(\𝑘,1, \𝑘,2, ..., \𝑘,𝑁)𝑃𝑘 (L̂)X

where a functional space {𝑔𝑖 (·) =
∑𝐾
𝑘=0

𝛾𝑘\𝑘,𝑖𝑃𝑘 (·) |∀𝑣𝑖 ∈ V} made

up of diverse filters is derived to enable node-wise learning. Specifi-

cally, the underlying graph region of individual node is mined with

a different filter function. Existing spectral GNN models mostly

learn with one filter function, and thereby can be strengthened

with our DSF framework. Besides, in comparison with the advo-

cated interpretability in BernNet [20], our DSF framework is able to

offer better interpretability by further differentiating micro graph

structures with learned diverse filters (see Section 5.4).

4.3.2 Time Complexity. Since our framework requires node-

wise computations with positional features, compared to its under-

lying GNNs, the model complexity is increased by O(𝑁 (𝑓𝑝𝑑+2𝐾𝑑+
2𝑑 +𝐾 +1) +2|E |𝐾𝑑 +2𝑁 2𝐾𝑑) in our DSF-𝑥-I. By the regularization

term L
Orth

, we further mange to reduce it by O(𝑁 2𝐾𝑑), and intro-

duce our major model named DSF-𝑥-R. The average running time is

reported on Table 1. Despite the slightly higher computational over-

head, we argue that DSF framework works still reasonably efficient

in practice, especially considering the remarkable performance

gains and the enhanced model interpretability (see Section 5.2 and

Section 5.4).

5 EXPERIMENTS
In this section, we design experiments to answer the following

research questions: (RQ1) How effective is our DSF framework in

improving state-of-the-art spectral GNNs for node classification?

(RQ2) Is there a negative impact on accuracy when each node is

parameterized by a separate set of trainable weights? If so, would

the proposed strategies, i.e., Position-aware FilterWeights and Local

Table 1: Average running time per epoch (ms)/average total running
time (s). Although DSF-GPR-I is less efficient on large networks,
DSF-GPR-R, (our major model) can reduce it by more than 75% on
average (though reasonably slower than GPR-GNN).

Datasets Small-scale Large-scale Average
GPR-GNN 1.10/2.24 0.98/5.01 1.08/2.74

DSF-GPR-I 5.96/12.19 40.34/131.77 12.21/33.93

DSF-GPR-R 2.49/6.29 3.02/14.48 2.59/7.78

and GlobalWeight Decomposition (LGWD) take effect in alleviating

this? and (RQ3) Could the proposed DSF framework indeed learn

diverse and interpretable filters capturing both the common graph

structure and regional heterogeneity?

5.1 Datasets and Experimental Setup
5.1.1 Datasets. We examine models over 11 real-world datasets

from various domains including 6 heterophilic graphs as Chameleon,

Squirrel [34], Wisconsin, Cornell, Texas [33] (webpage networks),

and Twitch-DE [27, 34] (social network), as well as 5 homophilic

graphs, i.e., Cora, Citeseer, Pubmed [35] (citation networks), Com-

puters, and Photo [30, 36] (the Amazon co-purchase graphs). De-

tailed statistics are provided in the Appendix (see Table 4).We divide

each dataset into 60%/20%/20% for training/validation/testing by

following [9, 20, 42], and create 10 random splits for evaluation.

5.1.2 Baselines. To verify the effectiveness of the proposed DSF

framework, we implement it upon three state-of-the-art spectral

GNNs with trainable polynomial filters, i.e., GPR-GNN [9], Bern-

Net [20], and JacobiConv [42]. Implementation details are provided

in Appendix C. Therefore, we have six variants with names for-

matted as DSF-𝑥-𝜙 for 𝑥 ∈ {GPR, Bern, Jacobi} and 𝜙 ∈ {I, R}.
For a more comprehensive comparison, we also consider another

8 baseline GNNs including GCN [24], GAT [40], ChebNet [11],

APPNP [15], GNN-LF/HF [51], FAGCN [6], and PA-GNN [49].

5.1.3 Setup. We fix the number of hidden features 𝑑 = 64 for all

models, and set the polynomial order𝐾 = 10 to follow [9, 20, 42]. For

each dataset, we tune the hyper-parameters of all models, including

baselines with their specified parameter ranges, on the validation

split using Optuna [1] for 200 trails.With the best hyper-parameters,

we train models in 1,000 epochs using early-stopping strategy and a

patience of 100 epochs. The average performance over 100 runs (10

runs× 10 splits) are reported. For reproducibity, our implementation

and the searching space of hyper-parameters are available at https:

//github.com/jingweio/DSF.

5.2 RQ1. Overall Evaluation
To answer RQ1, we report the average node classification accuracies

with a 95% confidence interval. From Table 2, we have the follow-

ing observations: 1) Spectral GNNs with trainable filters generally

yield better classification results than other baseline models. This

is because conventional GNNs typically fail to deal with complex

linking patterns, e.g., in heterophilic graphs, using their fixed fre-

quency response filters. Contrastively, GPR-GNN, BernNet, and

JacobiConv can simulate different types of filters to learn from

both assortative and disassortative label patterns. FAGCN is able to

https://github.com/jingweio/DSF
https://github.com/jingweio/DSF

Graph Neural Networks with Diverse Spectral Filtering WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 2: Node classification accuracies (%) ± 95% confidence interval over 100 runs. The row of PA-GNN [49]∗ lists the relative improvements of
PA-GNN upon GPR-GNN based on the results obtained from its paper, where – denotes values not provided. Our Improv. gives the best relative
improvements between our DSF variants over their common underlying model.

Datasets Heterophilic Graphs Homophilic Graphs
Chameleon Squirrel Wisconsin Cornell Texas Twitch-DE Cora Citeseer Pubmed Computers Photo

GCN [24] 67.22±0.43 54.21±0.41 59.45±0.72 52.76±1.17 61.66±0.71 73.94±0.15 88.13±0.25 77.00±0.27 89.07±0.11 91.06±0.12 93.99±0.12
GAT [40] 67.72±0.41 52.26±0.58 57.94±0.89 50.20±0.93 55.37±1.10 73.00±0.15 88.47±0.22 77.23±0.27 88.30±0.11 91.69±0.11 94.55±0.11
ChebNet [11] 64.85±0.44 48.14±0.33 80.93±0.72 77.98±1.00 75.83±1.20 73.73±0.14 87.64±0.21 76.93±0.24 89.91±0.11 91.65±0.12 95.27±0.07
APPNP [15] 53.66±0.33 36.08±0.36 81.23±0.64 81.29±0.78 79.42±1.05 72.65±0.11 88.70±0.21 77.77±0.24 89.93±0.09 91.62±0.10 94.92±0.09
GNN-LF [51] 54.29±0.36 36.87±0.33 59.85±0.60 62.90±0.98 61.88±0.95 73.03±0.13 88.90±0.25 77.35±0.29 88.89±0.10 91.12±0.11 95.13±0.08
GNN-HF [51] 55.22±0.42 35.45±0.30 68.17±0.72 72.98±1.02 66.66±1.34 71.92±0.13 89.01±0.19 77.74±0.23 89.53±0.10 90.73±0.10 95.26±0.09
FAGCN [6] 68.38±0.51 50.08±0.60 82.11±0.85 79.00±0.93 81.00±0.95 74.15±0.13 88.82±0.20 77.65±0.29 90.13±0.11 91.90±0.11 95.25±0.10

GPR-GNN [9] 69.01±0.50 55.39±0.33 82.72±0.85 80.81±0.78 81.66±1.02 74.07±0.18 89.03±0.20 77.63±0.28 90.10±0.44 92.34±0.13 95.34±0.09
DSF-GPR-I 71.18±0.52 57.08±0.29 87.64±0.79 84.76±0.90 85.44±1.05 74.58±0.16 89.64±0.20 78.03±0.26 90.26±0.08 92.49±0.12 95.64±0.07
DSF-GPR-R 71.64±0.55 58.44±0.30 87.43±0.74 84.93±0.90 85.56±0.93 74.81±0.14 89.63±0.17 78.22±0.29 90.51±0.07 92.80±0.12 95.73±0.08
Our Improv. 2.63% 3.05% 4.92% 4.12% 3.9% 0.74% 0.61% 0.59% 0.41% 0.46% 0.39%

PA-GNN [49]
∗

0.66% 1.28% – – – – -0.09% -0.74% -0.03% 1.03% 0.02%

BernNet [20] 70.59±0.42 56.63±0.32 85.00±0.94 82.10±0.95 82.20±0.98 74.45±0.15 88.72±0.23 77.52±0.29 90.21±0.46 92.57±0.10 95.42±0.08
DSF-Bern-I 72.95±0.53 59.45±0.32 88.23±0.81 85.07±0.93 84.59±1.07 74.96±0.15 89.05±0.22 78.32±0.27 90.40±0.10 92.76±0.10 95.73±0.07
DSF-Bern-R 73.60±0.53 59.99±0.30 88.02±0.91 84.29±0.93 84.42±1.00 75.00±0.15 89.10±0.22 78.27±0.26 90.52±0.10 92.84±0.10 95.79±0.06
Our Improv. 3.01% 3.36% 3.23% 2.97% 2.39% 0.55% 0.38% 0.80% 0.31% 0.27% 0.37%

JacobiConv [42] 73.71±0.42 57.22±0.24 83.21±0.68 82.34±0.88 82.42±0.90 74.34±0.12 89.24±0.19 77.81±0.29 89.50±0.47 92.26±0.10 95.62±0.06
DSF-Jacobi-I 74.88±0.39 58.26±0.26 85.34±0.74 84.54±0.81 83.68±1.12 74.65±0.13 89.54±0.19 78.18±0.26 89.78±0.09 92.38±0.11 95.76±0.07
DSF-Jacobi-R 75.00±0.38 59.23±0.27 86.13±0.70 84.39±0.88 84.46±0.81 74.75±0.15 89.66±0.19 78.23±0.25 90.07±0.10 92.44±0.11 95.75±0.08
Our Improv. 1.29% 2.01% 2.92% 2.20% 2.04% 0.41% 0.42% 0.42% 0.41% 0.18% 0.14%

capture both low- and high-frequency information but is limited as

they can only model pairwise node relationship. 2) The proposed
DSF framework consistently produces performance boost over its

underlying models, especially on heterophilic graphs with the max-

imal improvement up to 4.92%. This can be mainly explained by

the diverse characteristics inherent in their local graph patterns, as

shown in Figure 2. By comparison, the existing spectral GNN mod-

els assume the homogeneous spectral filtering, and neglect regional

heterogeneity at different graph localities. 3) For Twitch-DE dataset,

albeit also being heterophilic graphs, we only observe an marginal

improvement made by our framework. This is due to the fact that

its local structural patterns are naturally similar and distributed

uniformly across the graph, as indicated by the concentrated his-

togram in the Appendix (see Figure 6). Similar results can be spotted

on homophilic graphs with assortative linking patterns, which can

be easily modeled with classic homogeneous spectral filtering. The
refined classification accuracies made by DSF is mainly contributed

by dealing with some sudden changes on the graph boundaries,

e.g., between different community regions or social circles. 4)We

conduct comparisons with PA-GNN [49] which also tries to learn

node-specific parameter offsets. As no codes are publicly available

for PA-GNN, we simply compute the relative improvements upon

its base model GPR-GNN by copying the values from their paper

(listed in the row of PA-GNN [49]
∗
). In general, PA-GNN shows

marginal or even negative performance gains. We conjecture that

PA-GNN might encode different sources of information for pre-

dicting the offsets with small value constraint, thus limiting their

performance. 5) Interestingly, it is noted our variant DSF-𝑥-R not

only decreases the model complexity of DSF-𝑥-I but also achieves

higher performance gains on average. This is partially because DSF-

𝑥-I minimizes the orthogonal penalty, i.e., the last term in Eq. 4,

mainly by means of the iterative aggregation on a non-sparse graph

Table 3: Reduced classification accuracies (%) of our DSF framework
compared to base models while learning without IPE.

Datasets Chameleon Squirrel Wisconsin Cornell Texas Photo
DSF-GPR w/o IPE 22.62 22.55 5.81 11.20 11.10 1.51

DSF-Bern w/o IPE 17.47 18.65 4.72 6.25 6.54 3.59

DSF-Jacobi w/o IPE 24.64 26.93 1.10 3.10 5.88 1.53

Average Reduction 21.58 22.71 3.88 6.85 7.84 2.21

computed by P(𝑘)WP(𝑘)
𝑇
. Despite the theoretical convergence, ag-

gregating features on dense graph is prone to mistakenly preserve

noises and cause model overfitting. On the other hand, DSF-𝑥-R

with the regularization loss L
Orth

offers a more flexible and accu-

rate control, provides extra supervisory signals directly operated

on model parameters, and could also benefit from the advanced

optimization technique such as Adam [23] algorithm.

5.3 RQ2. Ablation Study
This subsection aims to validate our designs through ablation study.

We earlier argue that it is inappropriate to directly parameterize

each node a separate set of trainable filter weights. To provide

empirical evidences, we first experiment with our DSF framework

in node classification tasks while ablating the module of iterative

positional encoding (IPE). That is to directly make 𝑁 × (𝐾 + 1)
filter weights w.r.t. nodes to be trained as model parameters. We

then report the downgraded model performance compared to the

underlying models in Table 3, where six datasets are experimented

for illustration. As observed, learning without IPE leads to a clear

accuracy drop, notably on networks Chameleon and Squirrel with

complex connecting patterns and relative a large number of nodes.

This confirms our early conjecture as well as the importance of the

proposed IPE strategy. In this work, we also constrain the channel

WWW ’23, May 1–5, 2023, Austin, TX, USA Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang

Figure 3: Ablation study of DSF framework on six datasets with our
variants DSF-𝑥-R for all 𝑥 ∈ {GPR,Bern, Jacobi} as an example.

orthogonality while encoding positional features, and introduce a

technique called Local and Global Weight Decomposition (LGWD).

To examine their effectiveness, we conduct comprehensive ablation

study over six datasets in node classification. For simplicity, we

take DSF-𝑥-R, one variant of our framework, as an example. Similar

results can be obtained on the other variants. From Figure 3, two

conclusions can be drawn. First, removing either L
Orth

or LGWD

from our framework causes an evident performance downgrade,

validating the usefulness of these two developed techniques. Second,

the ablated variants still outperform their underlying models. This

further underpins the advantages offered by learning diverse filters

with awareness of positional information.

5.4 RQ3. Analysis on Diverse Filters
We now answer RQ3 by first plotting the diverse filter functions

learned by our DSF with BernNet as the illustrative base model.

Without loss of generality, we cluster the node-specific filter weights,

i.e., {[𝛽0,𝑖 , 𝛽1,𝑖 , ..., 𝛽𝐾,𝑖]𝑇 |∀𝑣𝑖 ∈ V}, into five groups with k-means

algorithm [22], and only plot the filters w.r.t. the representative

centroids for better visualization. From Figure 1 on heterophilc

graphs, we observe a group of function curves showing similar

overall shapes but different local aspects. This implies that the pro-

posed DSF framework is able to grasp both conformal and disparate

regional information on the graph. In addition, we also draw the di-

verse filters learned from homophilic graphs including Citeseer and

Photo. These graph networks have assortative mixing patterns with

homogeneous local structures. The learned filter functions produce

almost identical curves fluctuating within a reasonable interval

in Figure 4. It further shows our DSF framework could work on

different types of graphs. On the other hand, we present t-SNE [39]

visualization of the node-specific filter weights. The color likeness

reflects the corresponding similarity. From Figure 1d, disparate re-

gional patterns can be distinguished, and far-reaching nodes with

conformal local subgraphs still learn similar filter weights. Besides,

we notice the node in graph center displays a salient white color,

obviously divergent from its neighborhood. This is because such

vertex possesses the unique local context characterized by the dens-

est graph neighborhood, and thereby deserves a special treatment.

This phenomenon shows the flexibility of our DSF framework in

(a) Citeseer (b) Photo

Figure 4: Diverse filters on homophilic graphs, which are learned
to be similar due to the intrinsic assortative linking patterns dis-
tributed uniformly on these networks. Our DSF presents one general
framework which can be adaptive to different types of networks.

Figure 5: Visualization of node-specific filter weights on Chameleon
dataset, where a few border nodes are cropped away for better pictur-
ing. We annotate the captured regional distinctions using irregular
circles with different colors.

dealing with complex or even unusual cases, instead of learning

some strict relationships, e.g., nearby nodes ought to possess simi-

lar local structures (similar filter weights) and otherwise. We also

present the visualization on graphs in relative larger scale, such

as Chameleon network in Figure 5. More results can be found in

Appendix D. These analytical results demonstrate the strong inter-

pretability of our DSF framework.

6 CONCLUSION
This paper focuses on learning GNNs on complex graphs with re-

gional heterogeneity from the spectral perspective. We show that

most existing spectral GNNs implicitly assume invariance between

local networking patterns, and are restricted in the homogeneous
spectral filtering, thus limiting their performance. To this end, we

propose a novel diverse spectral filtering (DSF) framework gen-

eralizing spectral GNNs to better exploit rich and diverse local

graph information. Both theoretical and empirical investigations

validate the effectiveness of our DSF framework and its enhanced

interpretability by learning diverse filters.

ACKNOWLEDGMENTS
The work was partially supported by the following: Jiangsu Science

and Technology Programme (Natural Science Foundation of Jiangsu

Province) under No. BE2020006-4; Key Program Special Fund in

XJTLU under No. KSF-T-06.

Graph Neural Networks with Diverse Spectral Filtering WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2623–2631.

[2] Uri Alon and Eran Yahav. 2021. On the bottleneck of graph neural networks and

its practical implications. In International Conference on Learning Representations.
https://openreview.net/forum?id=i80OPhOCVH2

[3] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien

Adam, and Paul Honeine. 2021. Breaking the limits of message passing graph

neural networks. In International Conference on Machine Learning. PMLR, 599–

608.

[4] Mikhail Belkin and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural computation 15, 6 (2003), 1373–1396.

[5] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.

Graph neural networks with convolutional arma filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

[6] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency

information in graph convolutional networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 35. 3950–3957.

[7] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein.

2022. Improving graph neural network expressivity via subgraph isomorphism

counting. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).
[8] Tianwen Chen and Raymond Chi-Wing Wong. 2020. Handling information loss

of graph neural networks for session-based recommendation. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1172–1180.

[9] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive universal

generalized PageRank graph neural network. In International Conference on
Learning Representations. https://openreview.net/forum?id=n6jl7fLxrP

[10] Fan R. K. Chung. 1996. Spectral graph theory.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[12] Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. 2021.

AdaGNN: Graph neural networks with adaptive frequency response filter. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 392–401.

[13] Philipp Dufter, Martin Schmitt, and Hinrich Schütze. 2022. Position information

in transformers: An overview. Computational Linguistics 48, 3 (2022), 733–763.
[14] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and

Xavier Bresson. 2022. Graph neural networks with learnable structural and

positional representations. In International Conference on Learning Representations.
https://openreview.net/forum?id=wTTjnvGphYj

[15] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.

Predict then propagate: Graph neural networks meet personalized PageRank. In

International Conference on Learning Representations (ICLR).
[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[17] Alex Graves. 2012. Long short-term memory. Supervised sequence labelling with
recurrent neural networks (2012), 37–45.

[18] Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang. 2022. ES-GNN: Gen-

eralizing graph neural networks beyond homophily with edge splitting. arXiv
preprint arXiv:2205.13700 (2022).

[19] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.

2021. Dynamic neural networks: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021).

[20] Mingguo He, Zhewei Wei, Hongteng Xu, et al. 2021. Bernnet: Learning arbitrary

graph spectral filters via bernstein approximation. Advances in Neural Information
Processing Systems 34 (2021), 14239–14251.

[21] Md Amirul Islam, Sen Jia, and Neil DB Bruce. 2020. How much position informa-

tion do convolutional neural networks encode? arXiv preprint arXiv:2001.08248
(2020).

[22] Anil K Jain and Richard C Dubes. 1988. Algorithms for clustering data. Prentice-
Hall, Inc.

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[24] Thomas N. Kipf andMaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representations
(ICLR).

[25] Rongjie Lai and Stanley Osher. 2014. A splitting method for orthogonality

constrained problems. Journal of Scientific Computing 58, 2 (2014), 431–449.

[26] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Thirty-Second AAAI
conference on artificial intelligence.

[27] Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. 2021. New benchmarks for

learning on non-homophilous graphs. arXiv preprint arXiv:2104.01404 (2021).
[28] Vijay Lingam, Chanakya Ekbote, Manan Sharma, Rahul Ragesh, Arun Iyer, and

Sundararajan Sellamanickam. 2021. A piece-wise polynomial filtering approach

for graph neural networks. arXiv preprint arXiv:2112.03499 (2021).
[29] Xiaojun Ma, Qin Chen, Yuanyi Ren, Guojie Song, and Liang Wang. 2022. Meta-

weight graph neural network: Push the limits beyond global homophily. In

Proceedings of the ACM Web Conference 2022. 1270–1280.
[30] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[31] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:

Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 4602–4609.

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[33] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.

2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[34] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed

node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[35] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. Relational
Representation Learning Workshop, NeurIPS 2018 (2018).

[37] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-

tending high-dimensional data analysis to networks and other irregular domains.

IEEE signal processing magazine 30, 3 (2013), 83–98.
[38] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. 2021.

Breaking the limit of graph neural networks by improving the assortativity

of graphs with local mixing patterns. Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (2021).

[39] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne.

Journal of machine learning research 9, 11 (2008).

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph attention networks. International Conference
on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ

accepted as poster.

[41] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. 2022. Equivariant and sta-

ble positional encoding for more powerful graph neural networks. In International
Conference on Learning Representations.

[42] Xiyuan Wang and Muhan Zhang. 2022. How powerful are spectral graph neural

networks. In International Conference on Machine Learning. PMLR, 23341–23362.

[43] Boris Weisfeiler and Andrei Leman. 1968. The reduction of a graph to canonical

form and the algebra which appears therein. NTI, Series 2, 9 (1968), 12–16.
[44] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning. PMLR, 6861–6871.

[45] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24. https:

//doi.org/10.1109/TNNLS.2020.2978386

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[47] Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo,

et al. 2021. Diverse message passing for attribute with heterophily. Advances in
Neural Information Processing Systems 34 (2021), 4751–4763.

[48] Liang Yang, Wenmiao Zhou, Weihang Peng, Bingxin Niu, Junhua Gu, Chuan

Wang, Xiaochun Cao, and Dongxiao He. 2022. Graph neural networks beyond

compromise between attribute and topology. In Proceedings of the ACM Web
Conference 2022. 1127–1135.

[49] Yuxin Yang, Yitao Liang, and Muhan Zhang. [n. d.]. PA-GNN: Parameter-adaptive

graph neural networks. ([n. d.]).

[50] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond homophily in graph neural networks: Current limitations

and effective designs. Advances in Neural Information Processing Systems 33
(2020), 7793–7804.

[51] Meiqi Zhu, XiaoWang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting and

unifying graph neural networks with an optimization framework. In Proceedings
of the Web Conference 2021. 1215–1226.

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=ryGs6iA5Km

WWW ’23, May 1–5, 2023, Austin, TX, USA Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang

A FURTHER REMARKS ABOUT RELATED
WORK

Existing GNNs are often divided into spatial-based and spectral-

based methods. The former is mainly built upon a message-passing

framework [3, 16] where nodes exchange information with their

spatial neighbors. The latter is rooted in graph signal process-

ing [37] and spectral graph theory [10], and are mostly divided

into two categories. One class is spectral GNNs with fixed filters:

GCN [24] truncates Chebyshev polynomials to a simple first-order,

and works as a low-pass filter [44]. APPNP [15] constructs fil-

ter functions with personalized PageRank [32] to overcome the

over-smoothing problem [26]. GNN-LF/HF [51] is derived from

the perspective of graph optimization to simulate low/high-pass

filters. In the second class, spectral GNNs are mostly designed with

trainable filters: ChebNet [11] approximates the filtering opera-

tion with Chebyshev polynomials whose coefficients are learnable.

AdaGNN [12] learns adaptive filters to model each feature chan-

nel independently. GPR-GNN [9] extends APPNP [15] by directly

parameterizing its filter weights and training themwith gradient de-

scent. ARMA [5] takes rational filter functions while approximating

them still with polynomials. BernNet [20] employs positive weight

constraints in learning spectral filters with the Bernstein polyno-

mial approximation. Wang and Zhang [42] further analyze the

expressive power of spectral GNNs in a general form, and propose

JacobiConv with an orthogonal polynomial basis and feature-wise

filter learning.

B PROOF OF PROPOSITION 1
Proof. We denote 𝑓 (𝑥) = ∑𝐾

𝑘=0
𝛼𝑘𝑃𝑘 (𝑥), and substituting 𝑥 =

b𝑥 gives us 𝑓 (b𝑥) = ∑𝐾
𝑘=0

𝛼𝑘𝑃𝑘 (b𝑥). As the maximum order on

variable 𝑥 is 𝐾 , we can always express 𝑓 (b𝑥) in a power series

with new coefficient set {𝜔𝑘 }𝐾𝑘=0 where 𝜔𝑘 ∈ R, i.e., 𝑓 (b𝑥) =∑𝐾
𝑘=0

𝜔𝑘 (b𝑥)𝑘 . Moreover, since b is a constant, we can view 𝑓 (b𝑥)
as a function of variable 𝑥 , i.e., 𝑔(𝑥) = ∑𝐾

𝑘=0
(𝜔𝑘b𝑘)𝑥𝑘 , Similarly,

with the expressive power of polynomial basis 𝑃𝑘 (·), we can always

find a new coefficient set {𝛽𝑘 }𝐾𝑘=0 where 𝛽𝑘 ∈ R making 𝑔(𝑥) =∑𝐾
𝑘=0

𝛽𝑘𝑃𝑘 (𝑥). Therefore, we have 𝑓 (𝑥) = 𝑔(𝑥) where these two
functions are made up of the same polynomial basis 𝑃𝑘 ; [0, 2] → R
and two different coefficient sets {𝛼𝑘 }𝐾𝑘=0 and {𝛽𝑘 }

𝐾
𝑘=0

. □

C IMPLEMENTATION DETAILS
The overall pipeline of the proposed DSF framework is detailed in

Algorithm 1. We update node positional features and hidden states

in an iterative and parallel scheme (see the lines 11-17). Noting

in [14], similar approaches can be found. In our experiments, we

showcase it over three SOTA baselines including GPR-GNN, Bern-

Net, and JacobiConv. A comprehensive summary of their designed

trainable spectral filters can be found in [42]. We also provide other

important implementation details in the following.

C.1 Base Model Information
GPR-GNN [9] as backbone: The authors experiment GPR-GNN

with several initializing strategies on {𝛼𝑘 }𝐾𝑘=0 and take the optimal

one for the final evaluation. To take advantage of this, we adopt

Table 4: Statistics of real-world datasets, where★denotes large-scale
graphs. Both H [50] and Hclass [27] (considering class-imbalance
problem) measure graph homophily ratio from 0 to 1. Albeit the
relative high value given by H = 0.63, Twitch-DE is essentially
a heterophlic graph with class-imbalanced issue, as suggested by
Hclass = 0.14.

Dataset # Nodes # Edges # Features # Classes H H
class

Chameleon 2,227 36,101 2,325 5 0.23 0.06

Squirrel 5,201 217,073 2,089 5 0.22 0.03

Wisconsin 251 499 1,703 5 0.21 0.09

Cornell 183 295 1,703 5 0.30 0.05

Texas 183 309 1,703 5 0.11 0.00

Twitch-DE 9,498 153,138 2,545 2 0.63 0.14

Cora 2,708 5,429 1,433 7 0.81 0.77

Citeseer 3,327 4,732 3,703 6 0.74 0.63

Pubmed
★

19,717 44,338 500 3 0.80 0.66

Computers
★

13,752 245,861 767 10 0.78 0.70

Photo 7,650 119,081 745 8 0.83 0.77

Algorithm 1 Framework of diverse spectral filtering

Input: Node set: V , Laplacian matrix: L̂, raw node content and

positional features: X ∈ R𝑁×𝑓 ,X𝑝 ∈ R𝑁×𝑓𝑝 , polynomial basis:

𝑃𝑘 (·), hyper-parameters: 𝐾,[1, [2, _Orth, ground truth labels

for training: {y𝑖 ∈ R𝐶 |∀𝑣𝑖 ∈ Vtrn}, activation function in Eq. 7:

𝜎𝑝 (·), and DSF-mode: 𝜙 ∈ {I, R}.
Param: W𝑥 ∈ R𝑓 ×𝑑 , b𝑥 ∈ R𝑑 , W𝑝 ∈ R𝑓𝑝×𝑑 , b𝑝 ∈ R𝑑 , W ∈ R𝑑×𝑑 ,

W𝐹 ∈ R𝑑×𝐶 , b𝐹 ∈ R𝐶 , {W(𝑘) ∈ R𝑑 , b(𝑘) ∈ R|𝑘 = 0, 1, ..., 𝐾},
and {𝛾𝑘 ∈ R|∀𝑘 = 0, 1..., 𝐾}.

1: Set [2 = 0 if 𝜙 is R

2: // Projection into latent space.
3: X𝑖 ← ReLU(W𝑇

𝑥 X𝑖 + b𝑥) for all 𝑣𝑖 ∈ V .

4: P(0)
𝑖
← Tanh(W𝑇

𝑝 X𝑝𝑖 + b𝑏) for all 𝑣𝑖 ∈ V .

5: // enabled only for training.
6: X← Dropout(X), P(0) ← Dropout(P(0)).
7: // Initialization.
8: 𝛽0,𝑖 ← 𝛾0𝜎𝑝 (W(0)

𝑇
P(0)
𝑖
+ b(0)) for all 𝑣𝑖 ∈ V .

9: Z(0) ← diag(𝛽0,1, 𝛽0,2, ..., 𝛽0,𝑁)𝑃0 (L̂)X.

10: // Iterate polynomial orders while updating node positions.
11: for 𝑘 = 1, 2, ..., 𝐾 do
12: // Update node positional features.
13: P(𝑘) ← P(𝑘−1) using Eq. 6 with [1, [2,W.

14: // Update node hidden states.
15: 𝛽𝑘,𝑖 ← 𝛾𝑘𝜎𝑝 (W(𝑘)

𝑇
P(𝑘)
𝑖
+ b(𝑘)) for all 𝑣𝑖 ∈ V .

16: Z(𝑘) ← Z(𝑘−1) + diag(𝛽𝑘,1, 𝛽𝑘,2, ..., 𝛽𝑘,𝑁)𝑃𝑘 (L̂)X.

17: end for
18: ŷ𝑖 = softmax(W𝑇

𝐹
Z(𝐾)[𝑖,:] + b𝐹),∀𝑣𝑖 ∈ V . // Prediction.

19: L
task

= − 1

|Vtrn |
∑
𝑣𝑖 ∈Vtrn

y𝑇
𝑖
log(ŷ𝑖). // Training.

20: if 𝜙 is R then
21: Minimize L

task
+ _

Orth
L
Orth

with L
Orth

computed in Eq. 8.

22: else
23: Minimize L

task
.

24: end if

the same strategy to initialize our {𝛾𝑘 }𝐾𝑘=0 before training. We call

the resulted variants DSF-GPR-I and DSF-GPR-R.

Graph Neural Networks with Diverse Spectral Filtering WWW ’23, May 1–5, 2023, Austin, TX, USA

(a) Local Graph Frequency (low-frequency) (b) Local Graph Frequency (high-frequency)

(c) Local Graph Frequency (middle-frequency) (d) Local Label Homophily

Figure 6: Additional distributions of two essential graph properties (Better viewed in color). (a), (b), and (c) respectively show
the statistics of local graph frequency using eigenvectors with low-, high-, and middle-frequency.

Table 5: Classification accuracies (%) on homophilic graphs
with sparse splits.

Datasets Cora Citeseer Pubmed Computers Photo
GPR-GNN 76.05±0.48 65.39±0.44 83.30±0.24 85.68±0.16 91.88±0.18
DSF-GPR-I 77.75±0.42 66.83±0.37 83.74±0.15 86.94±0.16 92.39±0.14
DSF-GPR-R 77.94±0.48 66.77±0.34 84.33±0.13 87.65±0.15 92.52±0.12
Our Improv. 1.89% 1.38% 1.03% 1.97% 0.64%

(a) Wisconsin (b) Texas

(c) Squirrel

Figure 7: Additional visualization of node-specific filter
weights.

BernNet [20] as backbone: As stated in the original paper, 𝛼𝑘
is constrained to be non-negative. To follow up, we apply the same

limit to our 𝛽𝑘,𝑖 = 𝛾𝑘\𝑘,𝑖 by making 𝛾𝑖 ← ReLU(𝛾𝑖) and taking

𝜎𝑝 as a sigmoid function in Eq 7 to restrict \𝑘,𝑖 within (0, 1). The
resulted models are named as DSF-Bern-I and DSF-Bern-R.

JacobiConv [42] as backbone: The authors leverage a tech-
nique called PCD, which decomposes the filter weight into multiple

coefficients, such as 𝛼𝑘 = 𝜋𝑘
∏𝑘
𝑠=1 𝜌𝑠 . To deploy our DSF frame-

work over JacobiConv, we make 𝜋𝑘 = 𝛾𝑘 , and transform 𝜌𝑠 into

𝜌𝑠,𝑖 which is learned using Eq. 7. The produced variants are finally

referred to as DSF-Jacobi-I and DSF-Jacobi-R.

C.2 Initialization on IPE
The choice of initializing node positional embeddings X𝑝 is im-

portant, which usually requires to be permutation-invariant and

distance-sensitive. In this work, we leverage two popular and ef-

ficient methods. The first one is widely used and called Laplacian

Positional Encoding [4] (LapPE). It basically takes the decomposed

eigenvectors {u1, u2, ..., u𝑁 }, and each node 𝑣𝑖 is assigned with

PLap
𝑖

= [u1,𝑖 , u2,𝑖 , ..., u𝑓𝑝 ,𝑖]𝑇 ∈ R
𝑓𝑝
, where 𝑓𝑝 ≪ 𝑁 is the predefined

feature number. The other approach has been recently proposed

based on the random walk diffusion process, named RWPE [14].

It aims to moderate the sign ambiguity issue in LapPE, and is

formulated as PRW
𝑖

= [RW1

𝑖,𝑖
,RW2

𝑖,𝑖
, ...,RW

𝑑𝑓
𝑖,𝑖
]𝑇 ∈ R𝑓𝑝 , where

RW = AD−1. To increase model capacity and efficiency, before

starting iterative update, we map X𝑝 into a latent space with di-

mension 𝑑 (see line 3 in Algorithm 1).

D ADDITIONAL EXPERIMENTAL RESULTS
We also investigate the model performance in case of limited super-

vision. To do so, we follow the sparse splitting [9] on homophilic

graphs, i.e, 2.5%/2.5%/95% for training/validation/testing. Table 5

lists the classification accuracies (%), where noticeable improve-

ments are made by our DSF framework upon GPR-GNN albeit

limited supervision. Figure 7 provides more results on the visualiza-

tion of node-specific filter weights. As the same type of networks,

Wisconsin and Texas yield similar pictures to Cornell in the main

text. For Squirrel dataset, we can see a gradual shift on the color

depth of nodes from graph center to the border, which coincides

with our conclusions in the main text about our DSF framework

capturing regional heterogeneity.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Spectral Graph Neural Networks
	2.2 Graphs with Complex Linking Patterns
	2.3 Positional Encoding

	3 Notations and Preliminaries
	3.1 Laplacian Decomposition
	3.2 Graph Spectral Filtering

	4 diverse spectral filtering
	4.1 Motivations
	4.2 Diverse Filtering Framework
	4.3 Overall Algorithm

	5 Experiments
	5.1 Datasets and Experimental Setup
	5.2 RQ1. Overall Evaluation
	5.3 RQ2. Ablation Study
	5.4 RQ3. Analysis on Diverse Filters

	6 Conclusion
	Acknowledgments
	References
	A Further Remarks about Related Work
	B Proof of Proposition 1
	C Implementation Details
	C.1 Base Model Information
	C.2 Initialization on IPE

	D Additional Experimental Results

